
Deep Bottleneck Documentation

Deep Bottleneck study project team

Aug 15, 2018

Contents

1 Big Picture 1
1.1 Entropy & Mutual Information . 1
1.2 What is this mysterious information bottleneck? . 1
1.3 An Introduction into Neural Networks . 1
1.4 Basic Maths . 1

2 Contributing 3
2.1 Extending the framework . 3
2.2 Git workflow . 4
2.3 Style Guide . 4
2.4 Experiment workflow . 6
2.5 Documentation . 6

3 Glossary 7
3.1 Information Theory Basics . 7
3.2 Mathematical Terms in Tishby’s Experiments . 10

4 Literature 11

5 Literature Summary 13
5.1 1. THE INFORMATION BOTTLENECK METHOD (Tishby 1999) 13
5.2 2. DEEP LEARNING AND THE INFORMATION BOTTLENECK PRINCIPLE (Tishby 2015) . . . 13
5.3 3. OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS VIA INFORMATION (Tishby

2017) . 14
5.4 4. ON THE INFORMATION BOTTLENECK THEORY OF DEEP LEARNING (Saxe 2018) 14
5.5 5. ON THE INFORMATION BOTTLENECK THEORY OF DEEP LEARNING 14

6 User guide 17
6.1 Installation . 17
6.2 How to use the framework . 18

7 Experiments 23
7.1 Description of cohorts . 23
7.2 Comparing activation functions for a minimal model . 23
7.3 Calculation of mutual information for different parts of the dataset 31
7.4 Experiment Evaluation of Activation Functions . 33
7.5 Standard vs. Weighted Binning . 41

i

7.6 Effect of weight renormalization on activity patterns . 46
7.7 The data set provided by Tishby . 56
7.8 Our attempt to generate the data set above . 57

8 Indices and tables 63

9 API Documentation 65
9.1 deep_bottleneck package . 65

Bibliography 77

Python Module Index 79

ii

CHAPTER 1

Big Picture

The new glossary helping you to get the bigger picture.

1.1 Entropy & Mutual Information

including sufficient statistic and data processing inequality

1.2 What is this mysterious information bottleneck?

including distortion theory, lossless and lossy compression, Kullback-Leibler divergence, information plane, bounds

1.3 An Introduction into Neural Networks

including single and multilayer perceptron, Connectivity Matrix, Backpropagation, etc.

1.4 Basic Maths

including Probability Theory, Markov Chains

1

Deep Bottleneck Documentation

2 Chapter 1. Big Picture

CHAPTER 2

Contributing

2.1 Extending the framework

There are several possibilities to extend the framework. In the following the structure of the framework is shown
to allow an easy extension of the basic modules. There are five types of modules that can be included quite easy,
they are listed in the table below: Each module requires a module level load method to be defined, that passes the
hyperparameters from the sacred configuration to the constructor of the class.

dataset The datasets live in the deep_bottleneck.dataset folder and require a load-method re-
turning a training and a test dataset.

model The models live in in the deep_bottleneck.model folder and require a load-method as
well. But in this case the load-method returns a trainable keras-model.

estimator The mutual information estimators live in the deep_bottleneck.mi_estimator folder
and require a load-method as well. The load-method should return an estimator that is able to com-
pute the mutual information based on a dataset and is described in more detailed by a hyperparameter
called discretization_range.

callback Callbacks can be used for different kinds of tasks. They live in the deep_bottleneck.
callbacks folder and are used to save the needed information during the training or to influ-
ence the training process (e.g. early stopping). They need to inherit from keras.callbacks.
Callback.

plotter Plotters are using the saved data of the callbacks to create the different plots. They live in the
deep_bottleneck.plotter folder and need a load method returning a plotter-class inheriting
from deep_bottleneck.plotter.base.BasePlotter.

To add a new module, it needs to be added into the respective folder. Then the configuration parameter needs to be
set to the import path of the module. If the path is correctly defined and the module has a matching interface, it will
automatically be imported in experiment.py and conduct its tasks. More about the interfaces and the existing
methods in the API-documentation.

3

Deep Bottleneck Documentation

2.2 Git workflow

This workflow describes the process of adding code to the repository.

1. Describe what you want to achieve in an issue.

2. Pull the master to get up to date.

(a) git checkout master

(b) git pull

3. Create a new local branch with git checkout -b <name-for-your-branch>. It can make sense to
prefix your branch with a description like feature or fix.

4. Solve the issue, most probably in several commits.

5. In the meantime there might have been changes on the master branch. So you need to merge these changes into
your branch.

(a) git checkout master

(b) git pull to get the latest changes.

(c) git checkout <name-for-your-branch>

(d) git merge master. This might lead to conflicts that you have to resolve manually.

6. Push your branch to github with git push origin <name-for-your-branch>.

7. Go to github and switch to your branch.

8. Send a pull request from the web UI on github.

9. After you received comments on your code, you can simply update your pull request by pushing to the same
branch again.

10. Once your changes are accepted, merge your branch into master. This can also be done by the last reviewer that
accepts the pull request.

2.2.1 Git commit messages

Have a look at this guideline.

Most important:

• Single line summary starting with a verb (50 characters)

• Longer summary if necessary (wrapped at 72 characters).

Editors like vim enforce these constraints automatically.

2.3 Style Guide

Follow PEP 8 styleguide. It is worth reading through the entire styleguide, but the most importand points are summa-
rized here.

4 Chapter 2. Contributing

https://github.com/erlang/otp/wiki/writing-good-commit-messages
https://www.python.org/dev/peps/pep-0008

Deep Bottleneck Documentation

2.3.1 Naming

• Functions and variables use snake_case

• Classes use CamelCase

• Constants use CAPITAL_SNAKE_CASE

2.3.2 Spacing

Spaces around infix operators and assignment

• a + b not a+b

• a = 1 not a=1

An exception are keyword arguments

• some_function(arg1=a, arg2=b) not some_function(arg1 = a, arg2 = b)

Use one space after separating commas

• some_list = [1, 2, 3] not some_list = [1,2,3]

In general PyCharm’s auto format (Ctrl + Alt + l) should be good enough.

2.3.3 Type annotation

Since Python 3.5 type annotation are supported. They make sense for public interfaces, that should be kept consistent.

def add(a: int, b: int) -> int:

2.3.4 Docstrings

Use Google Style for docstrings in everything that has a somewhat public interface.

2.3.5 Clean code

And here our non exhaustive list to guidelines to write cleaner code.

1. Use meaningful variable names

2. Keep your code DRY (Don’t repeat yourself) by abstracting into functions and classes.

3. Keep everything at the same level of abstraction

4. Functions without side effects

5. Functions should have a single responsibility

6. Be consistent, stick to conventions, use a styleguide

7. Use comments only for what cannot be described in code

8. Write comments with care, correct grammar and correct punctuation

9. Write tests if you write a module

2.3. Style Guide 5

http://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_google.html

Deep Bottleneck Documentation

2.4 Experiment workflow

1. Define a hypothesis

2. Define set of parameters that is going to stay fixed

3. Define parameter to change (including possible values for the parameter)

4. Create a meaningful name for the experiment (group of experiment, name of parameter tested)

5. Make sure you set a seed (Pycharm: in run options append: “with seed=0”)

6. Program experiment (set parameters) using our framework

7. Commit your changes locally to obtain commit hash: this is going to be logged by sacredboard

8. Make sure your experiment is logged to the database

9. Start the experiment

10. Interpret and document results in a notebook. Include relevant plots using the artifact viewer. Make sure the
notebook is completely executed.

11. Move your notebook to docs/experiments, so it will be automatically included in the documentation.

12. Push your local branch to github - to make all commits available to everyone

2.5 Documentation

To build the documentation run:

$ cd docs
$ make html

A short restructeredText reference. There is also a longer video tutorial

If you added new packages and want to add them to the API documentation use:

$ sphinx-apidoc -o docs/api_doc/ deep_bottleneck deep_bottleneck/credentials.py deep_
→˓bottleneck/experiment.py deep_bottleneck/demo.py

Make sure to change the header of modules.rst back to “API Documentation”.

6 Chapter 2. Contributing

https://github.com/ralsina/rst-cheatsheet/blob/master/rst-cheatsheet.rst
https://www.youtube.com/watch?v=hM4I58TA72g

CHAPTER 3

Glossary

3.1 Information Theory Basics

This glossary is mainly based on MacKay’s Information Theory, Inference and Learning Algorithms. If not marked
otherwise, all information below can be found there.

Prerequisites: random variable, probability distribution

A major part of information theory is persuing answers to problems like “how to measure information content”, “how
to compress data” and “how to communicate perfectly over imperfect communcation channels”.

At first we will introduce some basic definitions.

3.1.1 The Shannon Information Content

The Shannon information content of an outcome 𝑥 is defined as

ℎ(𝑥) = log2

1

𝑃 (𝑥)
.

The unit of this measurement is called “bits”, which does not allude to 0s and 1s.

3.1.2 Ensemble

We extend the notion of a random variable to the notion of an ensemble. An ensemble 𝑋 is a triplet (𝑥,𝐴𝑋 , 𝑃𝑋),
where 𝑥 is just the variable denoting an outcome of the random variable, 𝐴𝑋 is the set of all possible outcomes and
𝑃𝑋 is the defining probability distribution.

7

Deep Bottleneck Documentation

3.1.3 Entropy

Let 𝑋 be a random variable and 𝐴𝑋 the set of possible outcomes. The entropy is defined as

𝐻(𝑋) =
∑︁
𝑥

𝑝(𝑥) 𝑙𝑜𝑔2

(︂
1

𝑝(𝑥)

)︂
.

The entropy describes how much we know about the outcome before the experiment. This means

3.1.4 Entropy for two dependent variables

Let 𝑋 and 𝑌 be two dependent random variables.

joint entropy

𝐻(𝑋,𝑌) =
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑙𝑜𝑔2

(︂
1

𝑝(𝑥, 𝑦)

)︂
conditional entropy if one variable is observed

𝐻(𝑋|𝑦 = 𝑏) =
∑︁
𝑥

𝑝(𝑥|𝑦 = 𝑏) 𝑙𝑜𝑔2

(︂
1

𝑝(𝑥|𝑦 = 𝑏)

)︂
conditional entropy in general

𝐻(𝑋|𝑌) =
∑︁
𝑦

𝑝(𝑦) 𝐻(𝑋|𝑦 = 𝑦)

=
∑︁
𝑥,𝑦

𝑝(𝑥, 𝑦) 𝑙𝑜𝑔2

(︂
1

𝑝(𝑥|𝑦)

)︂
chain rule for entropy

𝐻(𝑋,𝑌) = 𝐻(𝑋) +𝐻(𝑌 |𝑋)

= 𝐻(𝑌) +𝐻(𝑋|𝑌)

3.1.5 Mutual Information

Let 𝑋 and 𝑌 be two random variables. The mutual information between these variables is then defined as

𝐼(𝑋;𝑌) = 𝐻(𝑋) −𝐻(𝑋|𝑌)

= 𝐻(𝑌) −𝐻(𝑌 |𝑋)

= 𝐻(𝑋) +𝐻(𝑌) −𝐻(𝑋,𝑌)

The mutual information describes how much uncertainty about the one variable remains if we observe the other. It
holds that

𝐼(𝑋;𝑌) = 𝐼(𝑌 ;𝑋)𝐼(𝑋;𝑌) ≥ 0

The following figure gives a good overview:

8 Chapter 3. Glossary

Deep Bottleneck Documentation

Fig. 1: Mutual information overview.

3.1.6 Kullback-Leibler divergence

Let 𝑋 be a random variable and 𝑝(𝑥) and 𝑞(𝑥) two probability distributions over this random variable. The Kullback-
Leibler divergence is defined as

𝐷𝐾𝐿(𝑝||𝑞) =
∑︁
𝑥

𝑝(𝑥) 𝑙𝑜𝑔2

(︂
𝑝(𝑥)

𝑞(𝑥)

)︂
The Kullback-Leibler divergence is often called relative entropy and denotes “something” like a distance between
two distributions:

𝐷𝐾𝐿(𝑝||𝑞) ≥ 0

𝐷𝐾𝐿(𝑝||𝑞) = 0 ⇐⇒ 𝑝 = 𝑞

Yet it is not a real distance as symmetry is not given.

3.1.7 Typicality

We introduce the “Asymptotic equipartion” principle which can be seen as a law of large numbers. This princi-
ple denotes that for an ensemble of 𝑁 independent and identically distributed (i.i.d.) random variables 𝑋𝑁 ≡
(𝑋1, 𝑋2, . . . , 𝑋𝑁), with 𝑁 sufficiently large, the outcome 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑁) is almost certain to belong to a
subset of 𝒜𝑁

𝑋 with 2𝑁𝐻(𝑋) members, each having a probability that is ‘close to’ 2−𝑁𝐻(𝑋).

The typical set is defined as

𝑇𝑁𝛽 ≡ {𝑥 ∈ 𝒜𝑁
𝑋 : | 1

𝑁
log2

1

𝑃 (𝑥)
−𝐻| < 𝛽}.

The parameter 𝛽 sets how close the probability has to be to 2−𝑁𝐻 in order to call an element part of the typical set,
𝒜𝑋 is the alphabet for an arbitrary ensemble 𝑋 .

3.1. Information Theory Basics 9

Deep Bottleneck Documentation

3.1.8 Shannon’s Source Coding Theorem

3.2 Mathematical Terms in Tishby’s Experiments

3.2.1 Stochastic Gradient Descent

3.2.2 Spherical Harmonic power spectrum [Tishby (2017) 3.1 Experimental setup]

TODO

3.2.3 O(3) rotations of the sphere [Tishby (2017) 3.1 Experimental setup]

TODO

10 Chapter 3. Glossary

CHAPTER 4

Literature

This is just to demonstrate a citation. See [TZ15] for an introduction to our topic.

11

Deep Bottleneck Documentation

12 Chapter 4. Literature

CHAPTER 5

Literature Summary

5.1 1. THE INFORMATION BOTTLENECK METHOD (Tishby 1999)

Tishby, N., Pereira, F. C., & Bialek, W. (2000). The information bottleneck method. arXiv preprint physics/0004057.

5.1.1 1.1. Glossary

5.1.2 1.2. Structure

5.1.3 1.3. Criticisim

5.1.4 1.4. Todo List

5.2 2. DEEP LEARNING AND THE INFORMATION BOTTLENECK
PRINCIPLE (Tishby 2015)

Tishby, N., & Zaslavsky, N. (2015, April). Deep learning and the information bottleneck principle. In Information
Theory Workshop (ITW), 2015 IEEE (pp. 1-5). IEEE.

13

Deep Bottleneck Documentation

5.2.1 2.1. Glossary

5.2.2 2.2. Structure

5.2.3 2.3. Criticisim

5.2.4 2.4. Todo List

5.3 3. OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS
VIA INFORMATION (Tishby 2017)

Shwartz-Ziv, R., & Tishby, N. (2017). Opening the black box of deep neural networks via information. arXiv preprint
arXiv:1703.00810.

5.3.1 3.1. Glossary

5.3.2 3.2. Structure

5.3.3 3.3. Criticisim

5.3.4 3.4. Todo List

5.4 4. ON THE INFORMATION BOTTLENECK THEORY OF DEEP
LEARNING (Saxe 2018)

Saxe, A. M., Bansal, Y., Dapello, J., Advani, M., Kolchinsky, A., Tracey, B. D., & Cox, D. D. (2018, May). On the
information bottleneck theory of deep learning. In International Conference on Learning Representations.

5.4.1 4.1. Glossary

5.4.2 4.2. Structure

5.4.3 4.3. Criticisim

5.4.4 4.4. Todo List

5.5 5. ON THE INFORMATION BOTTLENECK THEORY OF DEEP
LEARNING

[Andrew2017]

5.5.1 Key Points of the paper:

• none of the following claims of Tishby ([TZ15]) holds in the general case:

14 Chapter 5. Literature Summary

Deep Bottleneck Documentation

1. deep networks undergo two distinct phases consisting of an initial fitting phase and a subsequent compres-
sion phase

2. the compression phase is causally related to the excellent generalization performance of deep networks

3. the compression phase occurs due to the diffusion-like behavior of stochastic gradient descent

• the osberved compression is different based on the activation function: double-sided saturating nonlinearities
like tanh yield a compression phase, but linear activation functions and single-sided saturating nonlinearities
like ReLU do not.

• there is no evident causal connection between compression and generalization.

• the compression phase, when it exists, does not arise from stochasticity in training.

• when an input domain consists of a subset of task-relevant and task-irrelevant information, the task-irrelevant in-
formation compress although the overall information about the input may monotonically increase with training
time. This compression happens concurrently with the fitting process rather than during a subsequent compres-
sion period.

5.5.2 Most important Experiments:

1. Tishby’s experiment reconstructed:

• 7 fully connected hidden layers of width 12-10-7-5-4-3-2

• trained with stochastic gradient descent to produce a binary classification from a 12-dimensional input

• 256 randomly selected samples per batch

• mutual information is calculated by binning th output activations into 30 equal intervals between -1 and 1

• trained on Tishby dataset

• tanh-activation function

2. Tishby’s experiment reconstructed with ReLu activation:

• 7 fully connected hidden layers of width 12-10-7-5-4-3-2

• trained with stochastic gradient descent to produce a binary classification from a 12-dimensional input

5.5. 5. ON THE INFORMATION BOTTLENECK THEORY OF DEEP LEARNING 15

Deep Bottleneck Documentation

• 256 randomly selected samples per batch

• mutual information is calculated by binning th output activations into 30 equal intervals between -1 and 1

• ReLu-activation function

3. Tanh-activation function on MNIST:

• 6 fully connected hidden layers of width 784 - 1024 - 20 - 20 - 20 - 10

• trained with stochastic gradient descent to produce a binary classification from a 12-dimensional input

• non-parametric kernel density mutual information estimator

• trained on MNIST dataset

• tanh-activation function

4. ReLu-activation function on MNIST:

• 6 fully connected hidden layers of width 784 - 1024 - 20 - 20 - 20 - 10

• trained with stochastic gradient descent to produce a binary classification from a 12-dimensional input

• non-parametric kernel density mutual information estimator

• trained on MNIST dataset

• ReLu-activation function

5.5.3 Presentation:

Google slides link

16 Chapter 5. Literature Summary

https://docs.google.com/presentation/d/1tB-TkvULUd4QvVn5ClDRDko6q8Y1EOdaZnTX3eGtxVc/edit?usp=sharing

CHAPTER 6

User guide

6.1 Installation

6.1.1 Environment

To run the experiment you need to install the required dependencies. We highly recommend that you use a virtual
environment as provided by conda or pipenv.

Then in your environment run:

$ pip install -r requirements/dev.txt

6.1.2 Sacred setup

When running experiments, the hyperparameters, metrics and plots are managed through Sacred and are stored in a
mongoDB database. Though you can setup your mongoDB instance however you want, it is most conveniently done
through the provided Docker files. This will not only get you started with mongoDB in no time, but will also set up a
mongo-express interface to conveniently manage your database and sacredboard to monitor your runs. In order to use
them you need to

1. Install Docker Engine.

2. Install Docker Compose.

3. Navigate to the directory with the setup files.

$ cd infractructure/sacred_setup

4. Edit the .env file. This file is hidden by default, but you can still edit it with any text editor, e.g. by vi .env.
Replace all values in angle brackets with meaningful and secure values.

5. Run docker-compose:

17

https://conda.io/docs/
https://docs.pipenv.org/
http://sacred.readthedocs.io
https://www.mongodb.com/
https://github.com/mongo-express/mongo-express
https://github.com/chovanecm/sacredboard
https://docs.docker.com/install/
https://docs.docker.com/compose/install/

Deep Bottleneck Documentation

docker-compose up -d

This will pull the necessary containers from the internet and build them. This may take several minutes. Af-
terwards mongoDB should be up and running. mongo-express should now be available on port 8081,
accessible by the user and password you set in the .env file (ME_CONFIG_BASICAUTH_USERNAME and
ME_CONFIG_BASICAUTH_PASSWORD). Sacredboard should be available on port 5000.

The current setup is optimized for a team that collaboratively stores results on a remote server. When running the
experiments locally for yourself, you should change the port mapping in the docker-compose.yml file to only
map to localhost, such that you do not expose your database to the internet. Simply prefix all port mappings with
localhost, e.g. replace:

ports:
- 5000:5000

by

ports:
- 127.0.0.1:5000:5000

5. In a final step, you need to tell sacred how to connect to the database. Edit file deep_bottleneck/
credentials.py, again replacing all values in angle brackets by the values you actually set in the .env file.
Additionally, you have to provide the IP address of the server your database is running on, which is either the address
given by your server provider or 127.0.0.1 when running mongo locally.

6. You are ready to run some exciting experiments!

6.1.3 Importing and exporting from mongoDB

The following section is meant to help you migrate your data from one server to another. If you are just starting you
can skip this section.

To export data from your mongo container run

$ docker run --rm --link <container_id>:mongo --network <network_id> -v /root/dump:/
→˓backup mongo bash -c 'mongodump --out /backup --uri mongodb://<username>:<password>
→˓@mongo:27017/?authMechanism=SCRAM-SHA-1'

make sure you you create the output folder, in this case /root/dump beforehand. You also need to look up the
id of your current mongo container using docker ls and find the id of the network is running is using docker
network ls. Then replace <username> and <password> by the values you originally set in your .env.

To import data again run following the same steps as above.

$ docker run --rm --link <container_id>:mongo --network <network_id> -v /root/dump:/
→˓backup mongo bash -c 'mongorestore /backup --uri mongodb://<username>:<password>
→˓@mongo:27017/?authMechanism=SCRAM-SHA-1'

6.2 How to use the framework

6.2.1 Running experiments

The idea of the project is based on the concepts presented by Tishby. To reproduce the basic setup of the experiments
one can simply start experiment.py.

18 Chapter 6. User guide

Deep Bottleneck Documentation

If all the required packages are installed properly and the program is started, different things should happen.

1. First the required modules of the framework are imported based on the defined configuration (more about con-
figurations in “Adding new Experiments”).

2. A neural network is trained using the defined dataset. The progress of this process is also logged in the console.

3. During the training process the required data is saved in regular time-steps to the local filesystem.

4. Given the saved data (e.g. the activations) it is possible to compute the mutual information of the different layer
and the input/output.

5. Using this different plots as e.g. the information plane plot are created and saved simultaneously in the filesystem
and in the database. The results of the experiments can be looked up either in the deep_bottleneck/plots
folder (only the plots of the last runs are saved) or using eval_tools as described below.

6.2.2 Evaluation tools

To make the rich results generated by the experiments accessible, we created an evaluation tool. It lets you query
experiments based on id, name or other configuration parameters and lets you view the generated plots, metrics and
videos conveniently in Jupyter notebooks. To get you started have a look at deep_bottleneck/eval_tools_demo.ipynb.

6.2.3 Adding new experiments (config)

Configuration

During the exploration of Tishby’s idea already a lot of experiments have been done, but there are still many things
one can do using this framework. To define a new experiment a new configuration needs to be added. The existing
configurations are saved in the deep_bottleneck/configs folder. To add a new configuration a new JSON file
is required. The currently relevant parts of the configuration and their effects are explained in the following table.

epochs Number of epochs the model is trained for. Most of the experiments for the harmonics dataset
used 8000 epochs.

batch_size Batch size used during the training process. Most dominant batch size in our experiments
was 256.

architecture Architecture of the trained model. Defined as a list of integers, where every integer defines
the number of neurons in one layer. It is important to notify that an additional readout layer is
automatically added (with the number of neurons corresponding to the number of classes in the
dataset). The basic architecture for the harmonics dataset is [10, 7, 5, 4, 3].

optimizer The optimizer used for the training of the neural network. Possible values are “sgd”, or
“adam”.

learning_rate The learning rate of the optimizer. Default values are 0.0004 for harmonics and 0.001 for
mnist.

calculate_mi_for The calculate_mi_for parameter defines the dataset that is used for the mutual infor-
mation computation. It can be done either for the training data (value: “training”), test data (“test”)
or the full dataset (“full_dataset”).

activation_fn The activation-function used to train the model. The following activation function are im-
plemented: tanh, relu, sigmoid, softsign, softplus, leaky_relu, hard_sigmoid,
selu, relu6, elu and linear.

6.2. How to use the framework 19

https://github.com/neuroinfo-os/deep-bottleneck/blob/master/deep_bottleneck/eval_tools_demo.ipynb

Deep Bottleneck Documentation

model The parameter which defines the basic model-choice. Currently only different architectures
of feed-foreward-networks can be used. So the possible choices right now are models.
feedforward and models.feedforward_batchnorm, the actual architecture is defined
by the architecture parameter.

dataset The parameter which defines the dataset used for training. Currently implemented datasets are
harmonics, mnist, fashion_mnist and mushroom.

estimator The estimator used for the computation of the mutual information. Because mutual informa-
tion cannot be computed analytically for more complex networks, it is necessary to estimate it. Pos-
sible estimators are mi_estimator.binning, mi_estimator.lower, mi_estimator.
upper.

discretization_range The different estimators have a different hyperparameter to add artificial noise to
the estimation. This parameter is used as a placeholder for the different hyperparameter. A typical
value is 0.07 for binning and 0.001 for upper and lower.

callbacks A list of additional callbacks as for example early stopping. Needs to defined as a list of paths
to the callbacks, as e.g. [callbacks.early_stopping_manual].

n_runs Number of runs the experiment is repeated. The results will be averaged over all runs to com-
pensate for outliers.

Executing multiple experiments

Using these parameters one should be able to define experiments as desired. To execute the experiment(s) one could
simply start des experiment.py but mainly due to our usage of external hardware resources (Sun grid engine) we
had to develop another way to execute experiments. We created two python files: run_experiment.py and
run_experiment_local.py, which can run either a single experiment or a group of experiments. For the local
execution of experiments with run_experiment_local.py one needs to switch to the deep_bottleneck folder
by:

$ cd deep_bottleneck

and then execute experiments by either pointing to a specific JSON file defining the experiment, e.g.:

$ python run_experiments_local.py -d configs/basic.json

or pointing at a directory containing all the experiments one wants to execute, e.g.:

$ python run_experiments_local.py -d configs/mnist

In that case all the JSONs in the folder and in its sub-folders are recursively executed.

Running experiment on the Sun grid engine

In case one uses a sun grid engine to execute the experiments it is possible to start run_experiments.py on the
engine in the same way with as described above. The experiments will get submitted to the engine using qsub. In
that case it is important to make sure that an /output/-folder exists on the directory-level of the experiment.sge
file.

Additionally it might be important to run experiments that are repeatable and will return the same results in every run.
Because the basic step of the framework is to train a neural network, including some kind of randomness the results
of two runs might be different even though they are based on the same configuration. To avoid misconceptions it is
possible to set a seed for each experiment, simply by using:

20 Chapter 6. User guide

Deep Bottleneck Documentation

$ python experiment.py with seed=0

(the exact seed is arbitrary, it just needs to be consistent). In case that one of the run_experiment files is used this
step is done for you, but even in the other cases some IDEs allow to set script-parameters for normal executions of a
specific file, such that it is not required to start the experiment.py out of the command-line.

6.2. How to use the framework 21

Deep Bottleneck Documentation

22 Chapter 6. User guide

CHAPTER 7

Experiments

7.1 Description of cohorts

The experiments are structured in different cohort, containing one specific variation of parameters. To show the aim of
the cohorts and to simplify the access of the saved artifacts using the artifact-viewer the following table offers a simple
description for each cohort.

Co-
hort

Description

co-
hort_1

Comparison of upper, lower and binning as different estimator. Additionally the hyperparameter of the
estimators are varied. All experiments are done for relu and tanh using sgd as optimizer.

co-
hort_2

Comparison of training-, test- and full-dataset as base for the mi-computation. All experiments are done
for relu and tanh using sgd as optimizer.

co-
hort_3

Comparison of upper, lower and binning as different estimator. Additionally the hyperparameter of the
estimators are varied. All experiments are done for relu and tanh using adam as optimizer.

co-
hort_4

Comparison of training-, test- and full-dataset as base for the mi-computation. All experiments are done
for relu and tanh using Adam as optimizer.

co-
hort_5

Comparison of different standard activation functions. All experiments are done using adam as optimizer.

co-
hort_6

Comparison of basic architectures. All experiments are done for relu and tanh using adam as optimizer.

co-
hort_7

Comparison of different hyperparameter for max-norm regularization. All experiments are done for relu
and tanh using adam as optimizer.

co-
hort_8

Comparison of architecture with batchnorm and without batchnorm. All experiments are done for relu and
tanh using adam as optimizer.

7.2 Comparing activation functions for a minimal model

The opposing paper argues that input compression is merely an artifact of double saturated activation functions. We
test this assumption for the minimal model in a numeric simulation. We look at the development of mututal information

23

Deep Bottleneck Documentation

with the input in a one neuron model with growing weights and compare different activation functions.

In [1]: import numpy as np
np.random.seed(0)
from scipy import stats
import matplotlib.pyplot as plt
import seaborn as sns
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tf.enable_eager_execution()

/home/jarno/.miniconda/lib/python3.6/site-packages/h5py/__init__.py:36: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`.
from ._conv import register_converters as _register_converters

In [2]: weights = np.arange(0.1, 8, 0.1)

In [3]: weights

Out[3]: array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1. , 1.1, 1.2, 1.3,
1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2. , 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,
2.7, 2.8, 2.9, 3. , 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,
4. , 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5. , 5.1, 5.2,
5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6. , 6.1, 6.2, 6.3, 6.4, 6.5,
6.6, 6.7, 6.8, 6.9, 7. , 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8,
7.9])

The input is sampled from a standard normal distribution.

In [4]: input_distribution = stats.norm()
input_ = input_distribution.rvs(1000)
plt.hist(input_, bins=30);

The input is multiplied by the different weights. This is the pass from the input neuron to the hidden neuron.

In [5]: net_input = np.outer(weights, input_)

The activation functions we want to test.

In [6]: def hard_sigmoid(x):
lower_bound = -2.5

24 Chapter 7. Experiments

Deep Bottleneck Documentation

upper_bound = 2.5
linear = 0.2 * x + 0.5
linear[x < lower_bound] = 0
linear[x > upper_bound] = 1
return linear

def linear(x):
return x

activation_functions = [tf.nn.sigmoid, tf.nn.tanh, tf.nn.relu, tf.nn.softsign, tf.nn.softplus, hard_sigmoid,
tf.nn.selu, tf.nn.relu6, tf.nn.elu, tf.nn.leaky_relu, linear]

First we look at the shape of the different activation functions. We see that some are double saturated like tanh and
some are not like relu.

In [7]: fig, ax = plt.subplots(figsize=(12, 8))
for actvation_function in activation_functions:

x = np.linspace(-5,5,100)
ax.plot(x, actvation_function(x), label=actvation_function.__name__)

plt.legend()
plt.show()

In [8]: fig, axes = plt.subplots(nrows=int(len(activation_functions)/3)+1, ncols=3, figsize=(10, 10))
axes = axes.flat

for i, actvation_function in enumerate(activation_functions):
x = np.linspace(-10,10,100)
axes[i].plot(x, actvation_function(x))
axes[i].set(title=actvation_function.__name__)

Remove unused plots.

7.2. Comparing activation functions for a minimal model 25

Deep Bottleneck Documentation

for ax in axes:
if not ax.lines:

ax.axis('off')

plt.tight_layout()
plt.show()

Apply the activation functions to the weighted inputs.

In [9]: outputs = {}
for actvation_function in activation_functions:

try:
outputs[actvation_function.__name__] = actvation_function(net_input).numpy()

except AttributeError:
outputs[actvation_function.__name__] = actvation_function(net_input)

26 Chapter 7. Experiments

Deep Bottleneck Documentation

We now estimate the discrete mututal information between the input 𝑋 and the activity of the hidden neuron 𝑌 , which
is in this case also the output. 𝐻(𝑌 |𝑋) = 0, since 𝑌 is a deterministic function of 𝑋 . Therefore

𝐼(𝑋;𝑌) = 𝐻(𝑌) −𝐻(𝑌 |𝑋) (7.1)
= 𝐻(𝑌) (7.2)

(7.3)

The entropy of the input is

In [10]: dig, _ = np.histogram(input_, 50)
print(f'{stats.entropy(dig, base=2):.2f} bits')

5.11 bits

In the paper a fixed number of bins is evenly distributed between the minimum and the maximum activation over all
weight values. The result below is indeed comparable to the paper and shows that mutual information decreases only
in double saturated activation functions, while it increases otherwise.

In [11]: fig, ax = plt.subplots(nrows=len(outputs), figsize=(10, 20), sharey=True)
ax = ax.flat
for ax_idx, (activation_function, Y) in enumerate(outputs.items()):

min_acitivity = Y.min()
max_acitivity = Y.max()

mi = np.zeros(len(weights))
for i in range(len(weights)):

bins = np.linspace(min_acitivity, max_acitivity, 50)
digitized, _ = np.histogram(Y[i], bins=bins)

mi[i] = stats.entropy(digitized, base=2)

ax[ax_idx].plot(weights, mi)
ax[ax_idx].set(title=f'{activation_function}; max H = {mi.max():.2f}', xlabel='w', ylabel='I(X;T)')

plt.tight_layout()

7.2. Comparing activation functions for a minimal model 27

Deep Bottleneck Documentation

28 Chapter 7. Experiments

Deep Bottleneck Documentation

Yet the fact that mutual information increases even in the linear case is a result of binning between the minimum
and the maximum activation of all neurons. It raises the question whether this approch is sensible at all or whether
binning boundaries should be determined for each simulated weight value seperately. We compare the approach with
creating a fixed number of bins between the minimum and the maximum activity for each weight.

In [12]: fig, ax = plt.subplots(nrows=len(outputs), figsize=(10, 20), sharey=True)
ax = ax.flat
for ax_idx, (activation_function, Y) in enumerate(outputs.items()):

mi = np.zeros(len(weights))
for i in range(len(weights)):

digitized, _ = np.histogram(Y[i], bins=50)
mi[i] = stats.entropy(digitized, base=2)

ax[ax_idx].plot(weights, mi)
ax[ax_idx].set(title=f'{activation_function}; max H = {mi.max():.2f}', xlabel='w', ylabel='I(X;T)', ylim=[0,7])

plt.tight_layout()
plt.show()

7.2. Comparing activation functions for a minimal model 29

Deep Bottleneck Documentation

30 Chapter 7. Experiments

Deep Bottleneck Documentation

This gives a more sensible result. The mutual information is now constant in the linear case and has the same value
as the entropy of the input. We now see that mutual information stays constant for many non saturated activation
functions, while it still decreases for double saturated functions. Yet it also decreases for some non-double saturated
functions such as elu and softplus.

Moreover, we see that some activation functions produce distributions with a higher maximum entropy than the input
distribution. While it is known that the data processing inequality does no longer hold after the addition noise through
binning, it should be investigated whether this is a systematic effect.

It also needs to be determined which way of binning (over the global range or over the range for each weight) is valid.

7.3 Calculation of mutual information for different parts of the dataset

In the this experiment we show the influence of calculating mutual information over different parts of the dataset.
Mutual information can be calculated either over the training, the testing or the full dataset. Moreover, we look at the
influcence of varying the activation between tanh and ReLU under these different settings.

These experiments belong to cohort 4.

In [1]: import sys
sys.path.append('../..')
from deep_bottleneck.eval_tools.experiment_loader import ExperimentLoader
from deep_bottleneck.eval_tools.utils import format_config, find_differing_config_keys
import matplotlib.pyplot as plt
from io import BytesIO

In [2]: loader = ExperimentLoader()

We look at the different infoplane plots.

In [3]: fig, ax = plt.subplots(2,3, figsize=(40, 20))
ax = ax.flat

experiment_ids = [209, 206, 208, 207, 204, 205]
experiments = loader.find_by_ids(experiment_ids)
differing_config_keys = find_differing_config_keys(experiments)

for i, experiment in enumerate(experiments):
img = plt.imread(BytesIO(experiment.artifacts['infoplane'].content))
ax[i].axis('off')
ax[i].imshow(img)
ax[i].set_title(format_config(experiment.config, *differing_config_keys),

fontsize=30)

7.3. Calculation of mutual information for different parts of the dataset 31

Deep Bottleneck Documentation

We can see in test data that tanh is overfitting at the end. We also see that ReLU has lower training than test accuracy
as it has less mutual information with the test data than with the train data. These details get lost when estmating mutual
information on the full dataset. It is more a smoothed version of both plots, which is less interpretable. Therefore we
conclude that it makes most sense to look at the infoplanes for both test and train data.

The infoplane for test data should give more insights into the generalization dynamics. The infoplane on the training
data should give insights into the training dynamics.

The overfitting of the tanh can also be seen in the develepment of training and test accuracy.

In [4]: import pandas as pd
import numpy as np

experiment = loader.find_by_id(206)
df = pd.DataFrame(data=np.array([experiment.metrics['training.accuracy'].values, experiment.metrics['validation.accuracy'].values]).T,

index=experiment.metrics['validation.accuracy'].index,
columns=['train_acc', 'val_acc'])

df[::100].plot(linestyle='', marker='.', markersize=3)

Out[4]: <matplotlib.axes._subplots.AxesSubplot at 0x7f60b825eba8>

32 Chapter 7. Experiments

Deep Bottleneck Documentation

The general configuration for the experiments.

In [5]: variable_config_dict = {k: '<var>' for k in differing_config_keys}
config = experiment.config
config.update(variable_config_dict)
config

Out[5]: {'activation_fn': '<var>',
'architecture': [10, 7, 5, 4, 3],
'batch_size': 256,
'calculate_mi_for': '<var>',
'callbacks': [],
'dataset': 'datasets.harmonics',
'discretization_range': 0.001,
'epochs': 8000,
'estimator': 'mi_estimator.upper',
'learning_rate': 0.0004,
'model': 'models.feedforward',
'n_runs': 5,
'optimizer': 'adam',
'plotters': [['plotter.informationplane', []],
['plotter.snr', []],
['plotter.informationplane_movie', []],
['plotter.activations', []]],

'regularization': False,
'seed': 0}

7.4 Experiment Evaluation of Activation Functions

In order to replicate and validate the experiment of Tishby, we tried different activation functions. We decided to test
the same activation functions used by the opposing paper “On the Information Bottleneck Theory” by Saxe, Bansal,
Dapello, Advani, Kolchinsky, Tracey and Cox. These included ReLU, tanh, Softplus and Softsign. Moreover, we

7.4. Experiment Evaluation of Activation Functions 33

Deep Bottleneck Documentation

added SELU, Leaky ReLU, ReLU6, ELU, Sigmoid, Hard-Sigmoid and a simple linear activation function.

7.4.1 1. The Hypothesis

The opposing paper states that “the information plane trajectory is predominantly a function of the neural nonlinearity
employed: double-sided saturating nonlinearities like tanh yield a compression phase as neural activations enter
the saturation regime, but linear activation functions and single-sided saturating nonlinearities like the widely
used ReLU in fact do no not” (Saxe et al., 2018, p.1).

Keep in mind that we have alreday seen before that this assumption holds true in our minimal modal analysis in a
numeric simulation.

7.4.2 2. Experimental Setting

In the following experiment we tested the eleven activation functions mentioned above with the following parameter
settings:

• Dataset: Harmonics

• Architecture: [10, 7, 5, 4, 3]

• Batchsize: 256

• Calculate MI for: full dataset

• Discretization range: 0.001

• Epochs: 8000

• Estimator: mi_upper

• Learning rate: 0.0004

• Model: models.feedforward

• n_runs: 5

• Optimizer: Adam

• Regularization: False

• Seed: 0

Note that we sticked to the standard architecture used in Tishby’s experiments, used the full dataset and the mutual
information upper estimator. The reasons for using these settings can be found in previous experiments (see cohort_1
to cohort_5).

7.4.3 3. Results

Import ArtifactLoader and instantiate it.

In [1]: import sys
sys.path.append('../..')
from iclr_wrap_up.artifact_viewer import ArtifactLoader
import matplotlib.pyplot as plt
from io import BytesIO

In [2]: loader = ArtifactLoader()

34 Chapter 7. Experiments

Deep Bottleneck Documentation

We varied the 11 activation functions. The experiments are named e.g. cohort_5_activationfn_tanh. The
experiment ID’s are the following:
- 210 (hard sigmoid, double-saturated), - 211 (softplus, single-saturated), - 212 (tanh, double-saturated), - 213 (selu,
single-saturated), - 214 (sigmoid, double-saturated), - 215 (relu6, double-saturated), - 216 (elu, single-saturated), -
217 (softsign, double-saturated), - 218 (leaky relu, single-saturated), - 219 (relu, single-saturated), - 220 (linear,
single-saturated).

3.1 Infoplane Plots

Taking a look at the infoplane plots, one can see that the assumption that only double-saturated activation functions
have a compression phase does not hold true. With 98.78% accuracy ELU works best, whereas the linear function
produces the worst results with an accuracy of 88.4%.

Only the double-saturated tanh activation function clearly shows a compression phase - especially in layer 3 and 4.

In [4]: fig, ax = plt.subplots(6, 2, figsize=(200, 200))
ax = ax.flat
activationfunctions = ['hard sigmoid','softplus', 'tanh', 'selu', 'sigmoid', 'relu6',

'elu', 'softsign', 'leaky relu', 'relu', 'linear']

for i,n in enumerate([210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220]):
artifacts = loader.load(experiment_id=n)
byte = artifacts['infoplane'].content
img = plt.imread(BytesIO(byte))
ax[i].axis('off')
ax[i].imshow(img)
ax[i].set_title(activationfunctions[i], fontsize=150)

plt.tight_layout()

7.4. Experiment Evaluation of Activation Functions 35

Deep Bottleneck Documentation

3.2 Compression of Each Layer for ReLU and tanh

In order to get a better understanding how compression happens, we plot the mutual information of the input per layer
over the epochs for our n=5 runs. A decreasing graph therefore indicates compression.

36 Chapter 7. Experiments

Deep Bottleneck Documentation

Note that the last layer - here layer 5 - is the softmax layer.

Layer 1: no compression, neither for ReLU, nor for tanh is happening. The mutual information of the input stays the
same at around 12.

Layer 2: One can clearly see that ReLU4 initially starts below all other activation functions (at around 8 after 8000
epochs. The mutual information of tanh is generally higher or equal than ReLU. No compression is visible.

Layer 3: It displays the same situation as in layer 2. It becomes more obvious that the mutual information of tanh is
above ReLU.

Layer 4: Same situation as in layer 3 but ReLU4 shows a little bit of compression.

Layer 5: This layer clearly shows compression for all 5 runs of tanh. Moreover, ReLU has generally a higher mutual
information than tanh.

Layer 6: Here the softmax function is applied, i.e. the outputs are in the range (0, 1], and all the entries add up to 1.
The mutual information of tanh stays underneath ReLU and therefore performs better.

To conclude: Only tanh really shows compression (decreasing graph) in layer 4.

In [10]: artifacts_relu = loader.load(experiment_id=219)
relucsv = artifacts_relu['information_measures'].show()
artifacts_tanh = loader.load(experiment_id=212)
tanhcsv = artifacts_tanh['information_measures'].show()

for layer in range(0,6):
plt.figure(figsize=(16,10))
for run in range(0,5):

epochs = relucsv[(relucsv['run'] == run) & (relucsv['layer'] == layer)]['epoch'].values
mixm_relu = relucsv[(relucsv['run'] == run) & (relucsv['layer'] == layer)]['MI_XM'].values
mixm_tanh = tanhcsv[(tanhcsv['run'] == run) & (tanhcsv['layer'] == layer)]['MI_XM'].values
cr = [1-0.2*run,0,0]
cb = [0,0,1-0.2*run]
plt.plot(epochs, mixm_relu, color=cr,label="ReLU{}".format(run+1))
plt.plot(epochs, mixm_tanh, color=cb, label="TanH{}".format(run+1))
plt.ylim([0,12.5])
plt.xlabel("epochs")
plt.ylabel("IXM")
plt.title("Layer {}".format(layer+1))
plt.legend()

plt.show()

7.4. Experiment Evaluation of Activation Functions 37

Deep Bottleneck Documentation

38 Chapter 7. Experiments

Deep Bottleneck Documentation

7.4. Experiment Evaluation of Activation Functions 39

Deep Bottleneck Documentation

Summary: only tanh shows compression with the given parameter setting. This does neither support the hypothesis
of the opposing paper that only double-saturated activation functions show compression, nor supports Tishby.

40 Chapter 7. Experiments

Deep Bottleneck Documentation

7.5 Standard vs. Weighted Binning

In [1]: import numpy as np
from scipy.stats import entropy
from scipy.stats import ortho_group
import matplotlib.pyplot as plt
np.random.seed(0)
import tensorflow as tf
import tensorflow.contrib.eager as tfe
tf.enable_eager_execution()

7.5.1 In this notebook we try to show that the normal binning approach is not useful
and try to derive a new one.

As before we simplify the calculation of the mutual information between the input and a representation, by just
calculating the entropy of the representation (as the representation is determined by the input).

We use a very simplistic neural network model of 3 input, 3 hidden and 3 output neurons. The first weights matrix
is an orthogonal matrix, such that the transposed matrix (after scaling) is the inverse matrix. We use linear activation
function.

In [62]: w1 = (1/3) * ortho_group.rvs(dim=3)
w2 = 9 * w1.T
print(w1@w2)

[[1.00000000e+00 -2.23155048e-17 -2.80566172e-18]
[-1.74057426e-17 1.00000000e+00 -6.79414319e-17]
[2.19160108e-19 -1.25252028e-16 1.00000000e+00]]

In [174]: def act_fn(x):
return x

The datapoints are randomly sampled from a normal distribution.

In [189]: N = 1000 # number of datapoints
data = np.random.randn(3,N)
y = np.ones(N)*0.5

The bins are created with linspace between the minimum of all datavalues minus 1 and the maximum of all datavalues
+ 1.

In [190]: n = 50 # number of bins
a = np.min(data)-1
b = np.max(data)+1
bins = np.tile(np.linspace(a,b,n),(3,1))

Here you can see the data points and the bins.

In [191]: for i in range(bins.shape[0]):
fig, ax = plt.subplots(1,1, figsize=(10,1), sharex=True,)
for border in bins[i,:]:

ax.axvline(border)
ax.set_xlim([a,b])
ax.scatter(data[i],y)

7.5. Standard vs. Weighted Binning 41

Deep Bottleneck Documentation

This function computes the entropy for certain bins. In the case that some data points will land completely outside of
the bins I add one bin from the lower border to -infinity and one from the upper border to +infinity.

In [192]: def compute_entropy(data, bins):
digitized = []
bins_c = np.sort(bins)
bins_c = np.hstack([np.reshape(np.ones(3)*-np.inf,(3,1)),bins_c])
bins_c = np.hstack([bins_c,np.reshape(np.ones(3)*np.inf,(3,1))])
for i in range(data.shape[0]):

dig = np.digitize(data[i,:],bins_c[i,:])
digitized.append(dig)

digitized = np.array(digitized)
uniques, unique_counts = np.unique(digitized, return_counts=True, axis=1)
return entropy(unique_counts, base=2)

In [193]: print("The entropy of the dataset is : {}".format(compute_entropy(data,bins)))

The entropy of the dataset is : 9.845254959649102

In [194]: o1 = act_fn(w1 @ data)

for i in range(bins_ours_1.shape[0]):
fig, ax = plt.subplots(1,1, figsize=(10,1), sharex=True,)
for border in bins[i,:]:

ax.axvline(border)
ax.scatter(o1[i,:],y)

print("Entropy with standard binning of the hidden layer is: {}".format(compute_entropy(o1, bins)))

Entropy with standard binning of the hidden layer is: 8.03183943622959

42 Chapter 7. Experiments

Deep Bottleneck Documentation

In [195]: o2 = act_fn(w2 @ o1)

for i in range(bins_ours_1.shape[0]):
fig, ax = plt.subplots(1,1, figsize=(10,1), sharex=True,)
for border in bins[i,:]:

ax.axvline(border)
ax.scatter(o2[i,:],y)

print("Entropy with standard binning of the output layer is: {}".format(compute_entropy(o2, bins)))

Entropy with standard binning of the output layer is: 9.845254959649102

We can see that the data processing inequality does not hold with this kind of binning. But what is wrong with it?

I the example above we constructed a network that does not lose information (transformation with invertable matrix
and back). The normal binning approach cannot capture this though, because it bins always on the same scale. The
scale obviously does not matter to the network as it just can rescale the values in the next layer.

This shows us that the information that is stored in a representation can not be calculated independently but is heavily
dependent on what the layer afterwards can get out of it.

So let’s think about what a good binning in layer K, with regard to the binning in layer K+1, should look like. First
activations that are in the same bin in layer K should not lead to activations which are binned differently in layer K+1.
Second activations that are in different bins in layer K should only in few cases lead to the same bins in layer K+1.
Meaning this should not happen randomly, but only when the network “wants it on purpose”.

7.5. Standard vs. Weighted Binning 43

Deep Bottleneck Documentation

Now assume that we could find a meaningfull binning in the last layer which actually describes the few different
representations that the network encodes in this layer. Then we could from there compute a “fitting” binning in the
layer before and so on. T This meaningful binning cannot be found, so we have to choose one and then propagate this
through the network. In this way we make only one “false” choice for binning but do it then the same in every layer.
To make it even easier we can do the binning on the input already and from there propagate it forward.

As this binning is dependent on the weights we will call it “weighted binning”. So lets see how this works out.

In [196]: # First forwardstep of data.
o1 = act_fn(w1 @ data)
First forwardstep of bins. Gotta sort it as the bins might be mirrored.
#weighted_bins_1 = np.sort(act_fn(w1 @ bins))
weighted_bins_1 = (act_fn(w1 @ bins))

print("Entropy with weighted binning of hidden layer: {}".format(compute_entropy(o1, weighted_bins_1)))

Entropy with weighted binning of hidden layer: 9.854274509657758

In this plot we see the weighted bins (red) in comparison to the original bins (blue).

In [197]: for i in range(weighted_bins_1.shape[0]):
fig, ax = plt.subplots(2,1, figsize=(10,3), sharex=True,)
for border in bins[i,:]:

ax[0].axvline(border)
ax[0].set_xlim([-5,5])
ax[0].scatter(o1[i,:],y)

for border in weighted_bins_1[i,:]:
ax[1].axvline(border, color='r')
ax[1].scatter(o1[i,:],y)

44 Chapter 7. Experiments

Deep Bottleneck Documentation

In [198]: # Second forwardstep of data.
o2 = act_fn(w2 @ o1)
Second forwardstep of bins.
#weighted_bins_2 = np.sort(act_fn(w2 @ weighted_bins_1))
weighted_bins_2 = (act_fn(w2 @ weighted_bins_1))

print("Entropy with weighted binning of output layer: {}".format(compute_entropy(o2, weighted_bins_2)))

Entropy with weighted binning of output layer: 9.845254959649102

In [199]: for i in range(weighted_bins_2.shape[0]):
fig, ax = plt.subplots(2,1, figsize=(10,3), sharex=True,)
for border in bins[i,:]:

ax[0].axvline(border)
ax[0].set_xlim([-5,5])
ax[0].scatter(o2[i,:],y)

for border in weighted_bins_2[i,:]:
ax[1].axvline(border, color='r')
ax[1].scatter(o2[i,:],y)

7.5. Standard vs. Weighted Binning 45

Deep Bottleneck Documentation

In [200]: print("Entropy with standard binning is:")
print(compute_entropy(data, bins))
print(compute_entropy(o1, bins))
print(compute_entropy(o2, bins))

print("Entropy with weighted binning is:")
print(compute_entropy(data, bins))
print(compute_entropy(o1, weighted_bins_1))
print(compute_entropy(o2, weighted_bins_2))

Entropy with standard binning is:
9.845254959649102
8.03183943622959
9.845254959649102
Entropy with weighted binning is:
9.845254959649102
9.854274509657758
9.845254959649102

We see that the data processing inequality also does not hold for weighted binning but the error being made is much
smaller.

Next it would be interesting to find a way to implement this into the model and see what we find there.

7.6 Effect of weight renormalization on activity patterns

In this experiment we show the influence of weight renormalization on the structure of activations in different layers.

46 Chapter 7. Experiments

Deep Bottleneck Documentation

Over the course of training the weights in a neural network usually get larger. For tanh activated neurons as an
example this means that on average the preactivations will be larger in magnitude and therefore the output of the
neurons be close to either -1 or 1.

It was argued in the opposing paper that in general double-sided saturating nonlinearities like tanh yield a compres-
sion phase as neural activations enter the saturation regime. For relu, the process of ever growing weights yields
bigger activations over time for the positive side of the activation spectrum. It is argued, that as relu is not bounded
for positive preactivations, this does not lead to compression in later stages of the training.

7.6.1 Experiments with max_weight_norm=0.8

Here, we are picking up on these ideas by introducing rescaling of the weights after each epoch, such that the norm of
every neuron’s weight vector does not exceed a specific threshold. We observe activation patterns that appear under
these constraint during training and interpret these with respect to the phenomenon of “compression” in the infoplane
plot.

In [1]: import sys
sys.path.append('../..')
from deep_bottleneck.eval_tools.experiment_loader import ExperimentLoader
from deep_bottleneck.eval_tools.utils import format_config, find_differing_config_keys
import matplotlib.pyplot as plt
from io import BytesIO

import pandas as pd
import numpy as np

In [2]: loader = ExperimentLoader()

In [3]: experiment_ids = [599, 600, 601, 602]
experiments = loader.find_by_ids(experiment_ids)
differing_config_keys = find_differing_config_keys(experiments)

We first look at the informationplane plot for 4 different experiments. We varied the activation function be-
tween tanh and relu as well as fixing the maximum magnitude of the weight vector per neuron to 0.8
(max_norm_weights=0.8) or leaving the weight magnitude unconstrained (max_norm_weight=False). The
corresponding informationplane plots for one run are displayed below.

In [4]: fig, ax = plt.subplots(2,2, figsize=(16, 14))
ax = ax.flat

for i, experiment in enumerate(experiments):
img = plt.imread(BytesIO(experiment.artifacts['infoplane'].content))
ax[i].axis('off')
ax[i].imshow(img)
ax[i].set_title(format_config(experiment.config, *differing_config_keys),

fontsize=16)
plt.tight_layout()
plt.show()

7.6. Effect of weight renormalization on activity patterns 47

Deep Bottleneck Documentation

With no weight regularzation, for reluwe see a pattern in the infoplane as it has been reported before by the opposing
paper. Except for the last layer, which always has a softmax activation function, no distict compression phase is
visible. For tanh, the 5th layer starts to compress, while all previous layers do not show distinct compression. In a
previously run experiment with several runs it was comfirmed that on average over several runs the earlier layers do
show compression as well. Still, we keep in mind that the phenomenon is not as stable as it might be suggested by
reports of Tishby et. al. Additionally, the prominent “dip” to the left after 60-100 epochs is missing interpretation by
previous works of Tishby and the opposing paper. Also, it seems to be to consistent in some experimental settings as
to be only a result of random fluctuations.

With weight normalization, several layers of tanh start to compress. Furthermore and noteably, with resticted weight
norm, ‘‘relu‘‘ compresses. The layers of both relu and tanh do not reach information with the output as high as
they did without constrained weights. Below we plot training and validation accuracies to confirm that the weight
regularization does not come at a cost of a signitficant loss of accuracy.

In [9]: fig, ax = plt.subplots(2,2, figsize=(12, 7))
ax = ax.flat

for i, experiment in enumerate(experiments):
df = pd.DataFrame(data=np.array([experiment.metrics['training.accuracy'].values, experiment.metrics['validation.accuracy'].values]).T,

index=experiment.metrics['validation.accuracy'].index,
columns=['train_acc', 'val_acc'])

df.plot(linestyle='', marker='.', markersize=5, ax=ax[i])

48 Chapter 7. Experiments

Deep Bottleneck Documentation

ax[i].set_title(format_config(experiment.config, *differing_config_keys),
fontsize=12)

ax[i].set_ylim([0,1])
ax[i].set(xlabel='epoch', ylabel='accuracy')

plt.tight_layout()
plt.show()

Mutual information with the input for deterministic networks is currently calculated as the entropy of the representa-
tion. The representation in this context is the (histogram of the) activation pattern resulting from display of all input
samples to the network in a specific epoch. A process towards a lower entropy activity distribution is therefore termed
“compression”.

We now look at the average activations over epochs for each layer. Each column for the plots is a non-normalized
histogram with 30 bins of the activations that were recorded during training and testing of the network.

In [6]: fig, ax = plt.subplots(2,2, figsize=(25, 35))
ax = ax.flat

for i, experiment in enumerate(experiments):
img = plt.imread(BytesIO(experiment.artifacts['activations'].content))
ax[i].axis('off')
ax[i].imshow(img)
ax[i].set_title(format_config(experiment.config, *differing_config_keys),

fontsize=20)

plt.tight_layout()
plt.show()

7.6. Effect of weight renormalization on activity patterns 49

Deep Bottleneck Documentation

50 Chapter 7. Experiments

Deep Bottleneck Documentation

In the activation plots for tanh we can identify several very prominent peaks of activations, especially during epochs
30-120 for normal tanh and 30-250 for weight-restricted tanh. These activity patterns conincide with the early phase
of compression in the tanh informationplane plots. Towards the end of training, higher layers saturate and have peaks
at activations of -1 and 1 in the histograms. This phase also displays as compression in the informationplane plot.

With regards to relu, the unconstrained network exhibits a peak of activations at 0. In tendency, the remaining
nonzero activations grow over the course of training and spread a broader range. This distribution has little structure
(except for the prominent peak at 0) and congruent with this also does not show compression in the informationplane.
The bias towards the entropy of the prominent peak at 0 due to the relu activation function will be discussed in more
detail in another notebook.

In the experiment with relu and with constrained weight vector, the nonzero activations in the higher layers, espe-
cially in layer 3 and 4, show several relatively pronounced peaks. They do not seem to be very prominent, because
there is still an big portion of all activations at 0. The pattern of several equidistant peaks of activation is similar to the
one observed in weight constrained tanh plots. Again, this is a process towards a lower entropy distribution, which is
reflected by the observed “compression” in the information plane.

7.6.2 Experiment with max_weight_norm=0.4

In the following we present an example with relu and the norm of the weight vector for each layer restricted to
0.4 This is a significantly stronger regularization which this time will also have an effect on the performance of the
network.

In [12]: relu04 = loader.find_by_id(603)
relu04.config

Out[12]: {'activation_fn': 'relu',
'architecture': [10, 7, 5, 4, 3],
'batch_size': 256,
'calculate_mi_for': 'full_dataset',
'callbacks': [],
'dataset': 'datasets.harmonics',
'discretization_range': 0.07,
'epochs': 1500,
'estimator': 'mi_estimator.binning',
'learning_rate': 0.0004,
'max_norm_weights': 0.4,
'model': 'models.feedforward',
'n_runs': 1,
'optimizer': 'adam',
'plotters': [['plotter.informationplane', []],
['plotter.snr', []],
['plotter.informationplane_movie', []],
['plotter.activations', []],
['plotter.activations_single_neuron', []]],

'seed': 42}

In the infoplane plot below it can be seen that training is impaired for the choice of such strict weight regularization.

In [8]: relu04.artifacts['infoplane'].show()

7.6. Effect of weight renormalization on activity patterns 51

Deep Bottleneck Documentation

In [9]: relu04.artifacts['activations'].show(figsize=(12,16))

52 Chapter 7. Experiments

Deep Bottleneck Documentation

The activation pattern of several peaks is even more pronounced with stronger restiction on the size of the weights.

The performance of the network is worse than with higher weightnorm. But the training dynamics still look ok. The
network learns the task up to a certain accurcy without overfitting.

7.6. Effect of weight renormalization on activity patterns 53

Deep Bottleneck Documentation

In [15]: relu04.metrics['training.accuracy'].plot()
relu04.metrics['validation.accuracy'].plot()
plt.ylabel('accurcy')
plt.xlabel('epoch')
plt.legend()

Out[15]: <matplotlib.legend.Legend at 0x7f9c33efb978>

7.6.3 Supplementary material

Below we find plots indicating the development of means and standard deviation of the gradient, its signal to noise ratio
as well as the norm of the weight vector for all layers over the course of training. Comparing plots for unconstrained
vs. constrained weight vector, we can reassure ourselves that rescaling the weights worked as we expected.

In [10]: fig, ax = plt.subplots(4,1, figsize=(16, 20))
ax = ax.flat

for i, experiment in enumerate(experiments):
img = plt.imread(BytesIO(experiment.artifacts['snr'].content))
ax[i].axis('off')
ax[i].imshow(img)
ax[i].set_title(format_config(experiment.config, *differing_config_keys),

fontsize=20)

plt.tight_layout()
plt.show()

54 Chapter 7. Experiments

Deep Bottleneck Documentation

7.6. Effect of weight renormalization on activity patterns 55

Deep Bottleneck Documentation

Below we find the configuration of all non-varied parameters that we used for the experiments above.

In [10]: variable_config_dict = {k: '<var>' for k in differing_config_keys}
config = experiment.config
config.update(variable_config_dict)
config

Out[10]: {'activation_fn': '<var>',
'architecture': [10, 7, 5, 4, 3],
'batch_size': 256,
'calculate_mi_for': 'full_dataset',
'callbacks': [],
'dataset': 'datasets.harmonics',
'discretization_range': 0.07,
'epochs': 1500,
'estimator': 'mi_estimator.binning',
'learning_rate': 0.0004,
'max_norm_weights': '<var>',
'model': 'models.feedforward',
'n_runs': 1,
'optimizer': 'adam',
'plotters': [['plotter.informationplane', []],
['plotter.snr', []],
['plotter.informationplane_movie', []],
['plotter.activations', []],
['plotter.activations_single_neuron', []]],

'seed': 42}

7.7 The data set provided by Tishby

First, we load the data set provided by Tishby.

In [1]: import os
import sys
nb_dir = os.path.split(os.path.split(os.getcwd())[0])[0]
sys.path.append(nb_dir)
from iclr_wrap_up.datasets import harmonics
import numpy as np

train_data, test_data = harmonics.load(nb_dir = nb_dir + '/iclr_wrap_up/')
X = np.concatenate([train_data[0], test_data[0]])
Y = np.concatenate([train_data[2], test_data[2]])

Next, we analyze the loaded data set. In this data set,𝑋 corresponds to the 12 binary inputs that represent 12 uniformly
distributed points on a 2-sphere. 𝑋 is realized as one of the 4096 possible combinations of the 12 binary inputs. 𝑌
corresponds to Θ (𝑓 (𝑋) − 𝜃), where 𝑓 is a spherically symmetric real-valued function, 𝜃 is a threshold, Θ a step
function that outputs either 0 or 1.

We sum over the 12 binary inputs of 𝑋 and determine the share of 𝑌 = 1 per each possible sum value.

In [2]: X_sum_Y = []

for i in range(13):
X_sum_Y.append([])

for i in range(len(X)):
n_pos_inputs = np.sum(X[i])
X_sum_Y[n_pos_inputs].append(Y[i])

56 Chapter 7. Experiments

Deep Bottleneck Documentation

print('Share of Y=1 per each value of the sum of the binary inputs of X:')
for i in range(13):

proportion = 100 * np.sum(np.array(X_sum_Y[i]))/len(X_sum_Y[i])
print(f'{i}: {proportion}%')

Share of Y=1 per each value of the sum of the binary inputs of X:
0: 0.0%
1: 0.0%
2: 0.0%
3: 0.0%
4: 0.0%
5: 7.575757575757576%
6: 57.57575757575758%
7: 92.42424242424242%
8: 100.0%
9: 100.0%
10: 100.0%
11: 100.0%
12: 100.0%

7.8 Our attempt to generate the data set above

After analyzing the provided data set, we try to generate a similar one ourselves since the explicit algorithm for doing
so was not provided in the paper.

The first task is to sample 12 uniformly distributed points on a unit 2-sphere. For that purpose, we randomly sample 𝜃
from [0, 2𝜋] using the uniform distribution. Then, we randomly sample a value for the cosine of 𝜑 from [−1, 1] again
using the uniform distribution. Finally, we apply arccosine to the sampled cosine of 𝜑 to get 𝜑 itself. Contrary to the
convention, we have assigned 𝜃 to the aziumthal angle and 𝜑 to the polar angle to keep the naming consistent with
SciPy’s spherical harmonics implementation.

Alternatively, one can randomly sample a 3-dimensional vector from R3 using standard normal distribution, normalize
it, and convert Cartesian coordinates to spherical coordinates.

In [3]: import random
from scipy.special import sph_harm

def sample_spherical(npoints):
"""Sample npoints uniformly distributed
points on a unit 2-sphere
"""
thetas = np.zeros(npoints)
phis = np.zeros(npoints)
for i in range(npoints):

thetas[i] = random.uniform(0, 2*np.pi)
cos_phi = random.uniform(-1, 1)
phis[i] = np.arccos(cos_phi)

return thetas, phis

def alternative_sample_spherical(npoints):
"""Sample npoints uniformly distributed
points on a unit 2-sphere
"""
vec = np.random.randn(3, npoints)
vec /= np.linalg.norm(vec, axis=0)
thetas = np.arctan2(vec[1], vec[0]) + np. pi
phis = np.arccos(vec[2])
return thetas, phis

7.8. Our attempt to generate the data set above 57

Deep Bottleneck Documentation

def wrong_sample_spherical(npoints):
"""Sample npoints points on a unit 2-sphere
"""
thetas = np.zeros(npoints)
phis = np.zeros(npoints)
for i in range(npoints):

thetas[i] = random.uniform(0, 2*np.pi)
phis[i] = random.uniform(0, np.pi)

return thetas, phis

np.random.seed(2)
random.seed(0)
thetas, phis = sample_spherical(12)

Directly sampling 𝜑 from [0, 𝜋] using uniform distribution results in concentration of points on the polar caps of the
unit sphere (neighborhoods of 𝑧 = 1 and 𝑧 = −1). Note that to express the spherical coordinates (1, 𝜑, 𝜃) of a point on
a unit sphere in terms of Cartesian coordinates (𝑥, 𝑦, 𝑧), we use the formulas 𝑥 = 𝑠𝑖𝑛 (𝜑)·𝑐𝑜𝑠 (𝜃), 𝑦 = 𝑠𝑖𝑛 (𝜑)·𝑠𝑖𝑛 (𝜃),
𝑧 = 𝑐𝑜𝑠 (𝜑). Because 𝑐𝑜𝑠 (𝜑) is flat near 𝜑 = 0 (𝑧 = 𝑐𝑜𝑠 (𝜑) ≈ 1) and 𝜑 = 𝜋 (𝑧 = 𝑐𝑜𝑠 (𝜑) ≈ −1) and 𝑠𝑖𝑛 (𝜑) is
almost zero near 𝜑 = 0 and 𝜑 = 𝜋 (𝑥 = 𝑠𝑖𝑛 (𝜑) · 𝑐𝑜𝑠 (𝜃) ≈ 0 and 𝑦 = 𝑠𝑖𝑛 (𝜑) · 𝑠𝑖𝑛 (𝜃) ≈ 0), higher than the expected
share (under uniform distribution) of the sampled points will be concentrated on the northern ((𝑥, 𝑦, 𝑧) ≈ (0, 0, 1))
and southern ((𝑥, 𝑦, 𝑧) ≈ (0, 0,−1) polar caps of the unit sphere.

In [4]: %matplotlib inline
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import axes3d

correct_thetas, correct_phis = sample_spherical(10000)
wrong_thetas, wrong_phis = wrong_sample_spherical(10000)

phi = np.linspace(0, np.pi, 20)
theta = np.linspace(0, 2 * np.pi, 40)
x = np.outer(np.sin(theta), np.cos(phi))
y = np.outer(np.sin(theta), np.sin(phi))
z = np.outer(np.cos(theta), np.ones_like(phi))

correct_x = np.sin(correct_phis) * np.cos(correct_thetas)
correct_y = np.sin(correct_phis) * np.sin(correct_thetas)
correct_z = np.cos(correct_phis) * np.ones_like(correct_thetas)

wrong_x = np.sin(wrong_phis) * np.cos(wrong_thetas)
wrong_y = np.sin(wrong_phis) * np.sin(wrong_thetas)
wrong_z = np.cos(wrong_phis) * np.ones_like(wrong_thetas)

fig, ax = plt.subplots(1, 2, subplot_kw={'projection':'3d', 'aspect':'equal'}, figsize=(20,20))
ax[0].plot_wireframe(x, y, z, color='k', rstride=1, cstride=1)
ax[0].scatter(correct_x, correct_y, correct_z, s=1, c='r', zorder=1)
ax[0].set_title('Correct Sampling of 10,000 points')
ax[1].plot_wireframe(x, y, z, color='k', rstride=1, cstride=1)
ax[1].scatter(wrong_x, wrong_y, wrong_z, s=1, c='r', zorder=1)
ax[1].set_title('Incorrect Sampling of 10,000 points')
plt.show()

58 Chapter 7. Experiments

Deep Bottleneck Documentation

Next, we have to generate expansion coefficients 𝑎𝑛𝑚 for the spherical harmonic decomposition of the spherical
function that underlies our spherically symmetric real-valued function 𝑓 .

In [5]: def generate_coeffs(l):
"""Generate random expansion coefficients
for the spherical harmonic decomposition
up to l-th degree
"""
coeffs = []
0-th coefficient is 1.
coeffs.append([1])
for n in range(1, l+1):

coeff = []
for m in np.linspace(-n, n, 2*n + 1, dtype=int):

The rest of the coefficients are randomly
sampled from a standard normal distribution.
coeff.append(np.random.randn())

coeffs.append(coeff)
return coeffs

We generate coefficients up to 85th degree,
since starting from 86, certain orders of the
degree result in undefined coefficient values.
a_nm = generate_coeffs(85)

Now, we simulate the spherically symmetric real-valued function 𝑓 using the generated coefficients 𝑎𝑛𝑚, the upper
limit on the degree of the spherical harmonic decomposition 𝑙, and inputs 𝜃 and 𝜑. For that purpose, we use Kazhdan’s
rotation invariant descriptors, i.e., the energies of a spherical function 𝑔, 𝑆𝐻 (𝑔) = {‖𝑔0 (𝜃, 𝜑)‖ , ‖𝑔1 (𝜃, 𝜑)‖ , ...}
where 𝑔𝑛 are the frequency components of 𝑔:

𝑔𝑛 (𝜃, 𝜑) = 𝜋𝑛 (𝑔) =

−𝑛∑︁
𝑚 = 𝑛

𝑎𝑛𝑚𝑌
𝑚
𝑛 (𝜃, 𝜑) .

𝐼𝑛𝑡ℎ𝑒𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑎𝑏𝑜𝑣𝑒, : 𝑚𝑎𝑡ℎ : ‘𝜋𝑛‘𝑖𝑠𝑡ℎ𝑒𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛𝑜𝑛𝑡𝑜𝑡ℎ𝑒

subspace 𝑉𝑛 = 𝑆𝑝𝑎𝑛
(︀
𝑌 −𝑛
𝑛 , 𝑌 −𝑛+1

𝑛 , ..., 𝑌 𝑛−1
𝑛 , 𝑌 𝑛

𝑛

)︀
, and 𝑌 𝑚

𝑛 is the spherical harmonic of degree 𝑛 ≥ 0 and order

7.8. Our attempt to generate the data set above 59

Deep Bottleneck Documentation

|𝑚| ≤ 𝑛. To process the pattern 𝑋 , we define 𝑓𝑙 to be:

𝑓𝑙 (𝑋 = (𝑥1, 𝑥2, ..., 𝑥12)) =

𝑙∑︁
𝑛 = 0

⃦⃦⃦⃦
⃦

12∑︁
𝑖 = 1

𝑥𝑖 · 𝑔𝑛 (𝜃𝑖, 𝜑𝑖)

⃦⃦⃦⃦
⃦

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘∀ 𝑖 : 𝑥𝑖 ∈ {0, 1} ‘.

In [6]: def func(a_nm, l, thetas, phis):
"""Apply f_l as defined above to the
inputs thetas and phis using the
decomposition coefficients a_nm
"""
result = 0
the first summation
for n in range(l+1):

result_n = 0
the second summation
for (theta, phi) in zip(thetas, phis):

the third summation corresponding to the freqency
component of the function
for m in np.linspace(-n, n, 2*n + 1, dtype=int):

result_n += a_nm[n][m] * sph_harm(m, n, theta, phi)
L2 norm
result += np.linalg.norm(result_n)

return result

Now, we assume 𝑓 = 𝑓85 which implies that the expansion coefficients of the 86th degree and on are all zero. To
find the appropriate 𝜃 value for Θ (𝑓 (𝑋) − 𝜃), we look at our analysis of the provided data above. We see that the
sum values between 0 and 4 involving the 12 binary inputs of 𝑋 correspond to 𝑌 = 0, and the sum values between
8 and 12 to 𝑌 = 1. We also see that roughly 57.58% of the data points corresponding to the sum value of 6 result in
𝑌 = 1. Hence, we assign the 42.42nd percentile (roughly 468.67) of 𝑓85(𝑋6) (𝑋6 corresponds to the data points with
sum value of 6) to 𝜃. We get binary 𝑌 values through 𝑌 = Θ (𝑓85 (𝑋) − 468.67). In the end, we calculate the share
of 𝑌 = 1 per each value of the sum of the binary inputs of 𝑋 . As you can see below, the resulting numbers roughly
mirror the ones we got above using the provided data set.

In [7]: X_sum_Y_hat = []

for i in range(13):
X_sum_Y_hat.append([])

for i in range(len(X)):
n_pos_inputs = np.sum(X[i])
X_sum_Y_hat[n_pos_inputs].append(func(a_nm, 85, thetas[X[i].astype(bool)], phis[X[i].astype(bool)]))

threshold = np.percentile(X_sum_Y_hat[6], 42.42)
print('\u03B8 \u2248 ' + str(np.around(threshold, decimals = 2)))

print('')

print('Share of \u0398(f(X)-\u03B8)=1 per each value of the sum of the binary inputs of X:')
for i in range(13):

proportion = 100 * np.sum(np.array(X_sum_Y_hat[i]) > threshold)/len(X_sum_Y_hat[i])
print(f'{i}: {proportion}%')

468.67

Share of (f(X)-)=1 per each value of the sum of the binary inputs of X:
0: 0.0%
1: 0.0%
2: 0.0%

60 Chapter 7. Experiments

Deep Bottleneck Documentation

3: 0.0%
4: 0.0%
5: 9.848484848484848%
6: 57.57575757575758%
7: 96.08585858585859%
8: 100.0%
9: 100.0%
10: 100.0%
11: 100.0%
12: 100.0%

In the next step, we soften 𝑌 = Θ (𝑓 (𝑋) − 𝜃) to 𝑝
(︁
𝑌 = 1 | 𝑋

)︁
= 𝜓 (𝑓 (𝑋) − 𝜃) where 𝜓 (𝑢) = 1

1+𝑒−𝛾·𝑢 . Here,

𝛾 is the sigmoidal gain and it should be high enough to keep the mutual information 𝐼
(︁
𝑋 ; 𝑌

)︁
≈ 0.99 bits. We set

𝛾 to 1. We also assume that the selected 𝜃 ≈ 468.67 results in 𝑝
(︁
𝑌 = 1

)︁
=

∑︀
𝑋 𝑝

(︁
𝑌 = 1 | 𝑋

)︁
· 𝑝 (𝑋) ≈ 0.5 with

uniform 𝑝 (𝑋). As you can see below, the values we get for 𝐼
(︁
𝑋 ; 𝑌

)︁
and 𝑝

(︁
𝑌 = 1

)︁
do meet the requirements.

In [8]: def sigmoidal_func(u, gamma=1):
"""Sigmoidal function with
the sigmoidal gain gamma
"""
return 1/(1 + np.exp(-gamma*u))

Here we calculate p(Y^hat = 1)
p_Y_hat = 0
p_X = 1/4096
for i in range(13):

p_Y_hat += np.sum(sigmoidal_func(np.array(X_sum_Y_hat[i]) - threshold))
p_Y_hat *= p_X
print('p(\u0176=1) \u2248 ' + str(np.around(p_Y_hat, decimals = 1)))

Here we calculate H(Y^hat)
H_Y_hat = -p_Y_hat*np.log2(p_Y_hat)-(1-p_Y_hat)*np.log2(1-p_Y_hat)
print('H(\u0176) \u2248 ' + str(np.around(H_Y_hat, decimals = 2)))

Here we calculate H(Y^hat|X)
H_Y_hat_given_X = 0
p_X = 1/4096
for i in range(13):

p_Y_hat_given_X = sigmoidal_func(np.array(X_sum_Y_hat[i]) - threshold)
H_Y_hat_given_X -= np.sum(p_Y_hat_given_X*np.log2(p_Y_hat_given_X))

H_Y_hat_given_X *= p_X
print('H(\u0176|X) \u2248 ' + str(np.around(H_Y_hat_given_X, decimals = 2)))

Here we calculate I(X;Y^hat) = H(Y^hat) - H(Y^hat|X)
I_X_Y_hat = H_Y_hat - H_Y_hat_given_X
print('I(X;\u0176) = H(\u0176) - H(\u0176|X) \u2248 '

+ str(np.around(H_Y_hat, decimals = 2)) + ' - '
+ str(np.around(H_Y_hat_given_X, decimals = 2)) + ' = '
+ str(np.around(I_X_Y_hat, decimals = 2)))

p(Ŷ=1) 0.5
H(Ŷ) 1.0
H(Ŷ|X) 0.01
I(X;Ŷ) = H(Ŷ) - H(Ŷ|X) 1.0 - 0.01 = 0.99

7.8. Our attempt to generate the data set above 61

Deep Bottleneck Documentation

62 Chapter 7. Experiments

CHAPTER 8

Indices and tables

• genindex

• modindex

• search

63

Deep Bottleneck Documentation

64 Chapter 8. Indices and tables

CHAPTER 9

API Documentation

9.1 deep_bottleneck package

9.1.1 Subpackages

deep_bottleneck.callbacks package

Submodules

deep_bottleneck.callbacks.activityprojector module

class deep_bottleneck.callbacks.activityprojector.ActivityProjector(train,
test,
log_dir=’./logs’,
embed-
dings_freq=10)

Bases: sphinx.ext.autodoc.importer._MockObject

Read activity from layers of a Keras model and log is for TensorBoard

This callback reads activity from the hidden layers of a Keras model and logs it as Model Checkpoint files. The
network activity patterns can then be explored in TensorBoard with its Embeddings Projector

on_epoch_end(epoch, logs=None)
Write layer activations to file :param epoch: Number of the current epoch :param logs: Quantities such as
acc, loss which are passed by Sequential.fit()

Returns None

on_train_end(logs=None)
Close files :param logs: Quantities such as acc, loss which are passed by Sequential.fit()

Returns None

65

Deep Bottleneck Documentation

set_model(model)
Prepare for logging the activities of the layers and set up the TensorBoard projector :param model: The
Keras model

Returns None

deep_bottleneck.callbacks.earlystopping_manual module

class deep_bottleneck.callbacks.earlystopping_manual.EarlyStoppingAtSpecificAccuracy(monitor,
value)

Bases: sphinx.ext.autodoc.importer._MockObject

classmethod load(monitor=’val_acc’, value=0.94)

on_epoch_end(epoch, logs)

deep_bottleneck.callbacks.earlystopping_manual.load(monitor=’val_acc’, value=0.94)

deep_bottleneck.callbacks.loggingreporter module

class deep_bottleneck.callbacks.loggingreporter.LoggingReporter(trn, tst, calcu-
late_mi_for,
batch_size,
activation_fn,
file_all_activations,
do_save_func=None,
*args,
**kwargs)

Bases: sphinx.ext.autodoc.importer._MockObject

on_batch_begin(batch, logs={})

on_epoch_begin(epoch, logs={})

on_epoch_end(epoch, logs={})

on_train_begin(logs={})

deep_bottleneck.callbacks.metrics_logger module

class deep_bottleneck.callbacks.metrics_logger.MetricsLogger(run)
Bases: sphinx.ext.autodoc.importer._MockObject

Callback to log loss and accuracy to sacred database.

on_epoch_end(epoch, logs=None)

66 Chapter 9. API Documentation

Deep Bottleneck Documentation

Module contents

deep_bottleneck.datasets package

Submodules

deep_bottleneck.datasets.fashion_mnist module

deep_bottleneck.datasets.fashion_mnist.load()
Load the Fashion-MNIST dataset

The output follows the following naming convention:

• X is the data

• y is class, with numbers from 0 to 9

• Y is class, but coded as a 10-dim vector with one entry set to 1 at the column index corresponding to the
class

Returns Returns two namedtuples, the first one containing training and the second one containing
test data respectively. Both come with fields X, y and Y:

deep_bottleneck.datasets.harmonics module

deep_bottleneck.datasets.harmonics.import_IB_data_from_mat(name_ID, nb_dir=”)
Writes a .npy file to disk containing the harmonics dataset used by Tishby

Parameters name_ID – Identifier which is going to be part of the output filename

Returns None

deep_bottleneck.datasets.harmonics.load(nb_dir=”)
Load the Information Bottleneck harmonics dataset

The output follows the following naming convention:

• X is the data

• y is class, with numbers from 0 to 9

• Y is class, but coded as a 10-dim vector with one entry set to 1 at the column index corresponding to the
class

Returns Returns two namedtuples, the first one containing training and the second one containing
test data respectively. Both come with fields X, y and Y:

deep_bottleneck.datasets.mnist module

deep_bottleneck.datasets.mnist.load()
Load the MNIST handwritten digits dataset

The output follows the following naming convention:

• X is the data

• y is class, with numbers from 0 to 9

9.1. deep_bottleneck package 67

Deep Bottleneck Documentation

• Y is class, but coded as a 10-dim vector with one entry set to 1 at the column index corresponding to the
class

Returns Returns two namedtuples, the first one containing training and the second one containing
test data respectively. Both come with fields X, y and Y:

deep_bottleneck.datasets.mushroom module

deep_bottleneck.datasets.mushroom.load()
Load the mushroom dataset.

Mushrooms are to be classified as either edible or poisonous. The output follows the following naming conven-
tion:

• X is the data

• y is class, with numbers from 0 to 9

• Y is class, but coded as a 10-dim vector with one entry set to 1 at the column index corresponding to the
class

Returns Returns two namedtuples, the first one containing training and the second one containing
test data respectively. Both come with fields X, y and Y:

Module contents

deep_bottleneck.eval_tools package

Submodules

deep_bottleneck.eval_tools.artifact module

class deep_bottleneck.eval_tools.artifact.Artifact(name, file)
Bases: object

Displays or saves an artifact.

content

extension = ''

save()

class deep_bottleneck.eval_tools.artifact.CSVArtifact(name, file)
Bases: deep_bottleneck.eval_tools.artifact.Artifact

Displays and saves a CSV artifact

extension = 'csv'

show()

class deep_bottleneck.eval_tools.artifact.MP4Artifact(name, file)
Bases: deep_bottleneck.eval_tools.artifact.Artifact

Displays or saves a MP4 artifact

extension = 'mp4'

68 Chapter 9. API Documentation

https://docs.python.org/3/library/functions.html#object

Deep Bottleneck Documentation

show()

class deep_bottleneck.eval_tools.artifact.PNGArtifact(name, file)
Bases: deep_bottleneck.eval_tools.artifact.Artifact

Displays or saves a PNG artifact.

extension = 'png'

img

show(figsize=(10, 10))

deep_bottleneck.eval_tools.experiment module

class deep_bottleneck.eval_tools.experiment.Experiment(id_, database,
grid_filesystem, config,
artifact_links, metric_links)

Bases: object

artifact_name_to_cls = {'activations': <class 'deep_bottleneck.eval_tools.artifact.PNGArtifact'>, 'infoplane': <class 'deep_bottleneck.eval_tools.artifact.PNGArtifact'>, 'infoplane_movie': <class 'deep_bottleneck.eval_tools.artifact.MP4Artifact'>, 'information_measures': <class 'deep_bottleneck.eval_tools.artifact.CSVArtifact'>, 'single_neuron_activations': <class 'deep_bottleneck.eval_tools.artifact.PNGArtifact'>, 'snr': <class 'deep_bottleneck.eval_tools.artifact.PNGArtifact'>}

artifacts
The artifacts belonging to the experiment.

Returns A mapping from artifact names to artifact objects, that belong to the experiment.

classmethod from_db_object(database, grid_filesystem, experiment_data: dict)

metrics
The metrics belonging to the experiment.

Returns A mapping from metric names to pandas Series objects, that belong to the experiment.

deep_bottleneck.eval_tools.experiment_loader module

class deep_bottleneck.eval_tools.experiment_loader.ExperimentLoader(mongo_uri=’mongodb://<MONGO_INITDB_ROOT_USERNAME>:<MONGO_INITDB_ROOT_PASSWORD>@<server_ip_address>:27017/?authMechanism=SCRAM-
SHA-1’,
db_name=’<MONGO_DATABASE>’)

Bases: object

Loads artifacts related to experiments.

find_by_config_key
Find experiments based on regex search against an configuration value.

A partial match between configuration value and regex is enough to find the experiment.

Parameters

• key – Configuration key to search on.

• value – Regex that is matched against the experiment’s configuration.

Returns The matched experiments.

find_by_id
Find experiment based on its id.

Parameters experiment_id – The id of the experiment.

Returns The experiment corresponing to the id.

9.1. deep_bottleneck package 69

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Deep Bottleneck Documentation

find_by_ids(experiment_ids: Iterable[int])→ List[deep_bottleneck.eval_tools.experiment.Experiment]
Find experiments based on a collection of ids.

Parameters experiment_ids – Iterable of experiment ids.

Returns The experiments corresponding to the ids.

find_by_name
Find experiments based on regex search against its name.

A partial match between experiment name and regex is enough to find the experiment.

Parameters name – Regex that is matched against the experiment name.

Returns The matched experiments.

deep_bottleneck.eval_tools.utils module

deep_bottleneck.eval_tools.utils.find_differing_config_keys(experiments: Iter-
able[deep_bottleneck.eval_tools.experiment.Experiment])

Find the config keys that were assigned to different values in a cohort of experiments..

deep_bottleneck.eval_tools.utils.format_config(config, *config_keys)

Module contents

deep_bottleneck.mi_estimator package

Submodules

deep_bottleneck.mi_estimator.base module

class deep_bottleneck.mi_estimator.base.MutualInformationEstimator(discretization_range,
train-
ing_data,
test_data,
archi-
tecture,
calcu-
late_mi_for)

Bases: object

compute_mi(file_all_activations)→ pandas.core.frame.DataFrame

nats2bits = 1.4426950408889634
Nats to bits conversion factor.

70 Chapter 9. API Documentation

https://docs.python.org/3/library/functions.html#object

Deep Bottleneck Documentation

deep_bottleneck.mi_estimator.binning module

class deep_bottleneck.mi_estimator.binning.BinningMutualInformationEstimator(discretization_range,
train-
ing_data,
test_data,
ar-
chi-
tec-
ture,
cal-
cu-
late_mi_for)

Bases: deep_bottleneck.mi_estimator.base.MutualInformationEstimator

deep_bottleneck.mi_estimator.binning.load(discretization_range, training_data, test_data,
architecture, calculate_mi_for)

deep_bottleneck.mi_estimator.bounded module

class deep_bottleneck.mi_estimator.bounded.BoundedMutualInformationEstimator(discretization_range,
train-
ing_data,
test_data,
ar-
chi-
tec-
ture,
cal-
cu-
late_mi_for)

Bases: deep_bottleneck.mi_estimator.base.MutualInformationEstimator

deep_bottleneck.mi_estimator.kde module

deep_bottleneck.mi_estimator.kde.Kget_dists(X)
Keras code to compute the pairwise distance matrix for a set of vectors specifie by the matrix X.

deep_bottleneck.mi_estimator.kde.entropy_estimator_bd(x, var)

deep_bottleneck.mi_estimator.kde.entropy_estimator_kl(x, var)

deep_bottleneck.mi_estimator.kde.get_shape(x)

deep_bottleneck.mi_estimator.kde.kde_condentropy(output, var)

9.1. deep_bottleneck package 71

Deep Bottleneck Documentation

deep_bottleneck.mi_estimator.lower module

class deep_bottleneck.mi_estimator.lower.LowerBoundMutualInformationEstimator(discretization_range,
train-
ing_data,
test_data,
ar-
chi-
tec-
ture,
cal-
cu-
late_mi_for)

Bases: deep_bottleneck.mi_estimator.bounded.BoundedMutualInformationEstimator

deep_bottleneck.mi_estimator.lower.load(discretization_range, training_data, test_data, ar-
chitecture, calculate_mi_for)

deep_bottleneck.mi_estimator.upper module

class deep_bottleneck.mi_estimator.upper.UpperBoundMutualInformationEstimator(discretization_range,
train-
ing_data,
test_data,
ar-
chi-
tec-
ture,
cal-
cu-
late_mi_for)

Bases: deep_bottleneck.mi_estimator.bounded.BoundedMutualInformationEstimator

deep_bottleneck.mi_estimator.upper.load(discretization_range, training_data, test_data, ar-
chitecture, calculate_mi_for)

Module contents

deep_bottleneck.models package

Submodules

deep_bottleneck.models.feedforward module

deep_bottleneck.models.feedforward.load(architecture, activation_fn, optimizer,
learning_rate, input_size, output_size,
max_norm_weights=False)

72 Chapter 9. API Documentation

Deep Bottleneck Documentation

deep_bottleneck.models.feedforward_batchnorm module

deep_bottleneck.models.feedforward_batchnorm.load(architecture, activation_fn,
optimizer, learning_rate,
input_size, output_size,
max_norm_weights=False)

Module contents

deep_bottleneck.plotter package

Submodules

deep_bottleneck.plotter.activations module

class deep_bottleneck.plotter.activations.ActivityPlotter(run, dataset)
Bases: deep_bottleneck.plotter.base.BasePlotter

plot(measures_summary)

plotname = 'activations'

deep_bottleneck.plotter.activations.load(run, dataset)

deep_bottleneck.plotter.activations_single_neuron module

class deep_bottleneck.plotter.activations_single_neuron.SingleNeuronActivityPlotter(run,
dataset)

Bases: deep_bottleneck.plotter.base.BasePlotter

plot(measures_summary)

plotname = 'single_neuron_activations'

deep_bottleneck.plotter.activations_single_neuron.load(run, dataset)

deep_bottleneck.plotter.base module

class deep_bottleneck.plotter.base.BasePlotter
Bases: object

Base class for plotters.

generate(measures_summary)

plot(measures_summary)→ matplotlib.figure.Figure

plotname = ''

deep_bottleneck.plotter.informationplane module

class deep_bottleneck.plotter.informationplane.InformationPlanePlotter(run,
dataset)

Bases: deep_bottleneck.plotter.base.BasePlotter

9.1. deep_bottleneck package 73

https://docs.python.org/3/library/functions.html#object

Deep Bottleneck Documentation

Plot the infoplane for average MI estimates.

plot(measures_summary)

plotname = 'infoplane'

deep_bottleneck.plotter.informationplane.load(run, dataset)

deep_bottleneck.plotter.informationplane_movie module

class deep_bottleneck.plotter.informationplane_movie.InformationPlaneMoviePlotter(run,
dataset)

Bases: deep_bottleneck.plotter.base.BasePlotter

Plot the infoplane movie for several runs of the same network.

filename = 'plots/infoplane_movie.mp4'

generate(measures_summary)

plot(measures_summary)

plotname = 'infoplane_movie'

deep_bottleneck.plotter.informationplane_movie.load(run, dataset)

deep_bottleneck.plotter.snr module

class deep_bottleneck.plotter.snr.SignalToNoiseRatioPlotter(run, dataset)
Bases: deep_bottleneck.plotter.base.BasePlotter

plot(measures_summary)

plotname = 'snr'

deep_bottleneck.plotter.snr.load(run, dataset)

Module contents

9.1.2 Submodules

9.1.3 deep_bottleneck.artifact_viewer module

class deep_bottleneck.artifact_viewer.Artifact(name, file)
Bases: object

Displays or saves an artifact.

content

extension = ''

save()

class deep_bottleneck.artifact_viewer.ArtifactLoader(mongo_uri=’mongodb://<MONGO_INITDB_ROOT_USERNAME>:<MONGO_INITDB_ROOT_PASSWORD>@<server_ip_address>:27017/?authMechanism=SCRAM-
SHA-1’,
db_name=’<MONGO_DATABASE>’)

Bases: object

Loads artifacts related to experiments.

74 Chapter 9. API Documentation

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Deep Bottleneck Documentation

load

class deep_bottleneck.artifact_viewer.CSVArtifact(name, file)
Bases: deep_bottleneck.artifact_viewer.Artifact

Displays and saves a CSV artifact

extension = 'csv'

show()

class deep_bottleneck.artifact_viewer.MP4Artifact(name, file)
Bases: deep_bottleneck.artifact_viewer.Artifact

Displays or saves a MP4 artifact

extension = 'mp4'

show()

class deep_bottleneck.artifact_viewer.PNGArtifact(name, file)
Bases: deep_bottleneck.artifact_viewer.Artifact

Displays or saves a PNG artifact.

extension = 'png'

show(figsize=(10, 10))

9.1.4 deep_bottleneck.run_experiments module

This script can be used to submit several experiments to the grid.

All the experiments need to be specified as seperate JSON or yml files.

deep_bottleneck.run_experiments.create_output_directory()

deep_bottleneck.run_experiments.main()

deep_bottleneck.run_experiments.parse_command_line_args()

deep_bottleneck.run_experiments.start_experiments(config_dir)
Recursively walk through the config dir and submit all experiment configurations in there to the grid.

9.1.5 deep_bottleneck.utils module

deep_bottleneck.utils.construct_full_dataset(training, test)
Concatenates training and test data splits to obtain the full dataset.

The input arguments use the following naming convention:

• X is the training data

• y is training class, with numbers from 0 to 1

• Y is training class, but coded as a 2-dim vector with one entry set to 1 at the column index correspond-
ing to the class

Parameters

• training – Namedtuple with fields X, y and Y:

• test – Namedtuple with fields X, y and Y:

9.1. deep_bottleneck package 75

Deep Bottleneck Documentation

Returns A new Namedtuple with fields X, y and Y containing the concatenation of training and test
data

deep_bottleneck.utils.data_shuffle(data_sets_org, percent_of_train, min_test_data=80, shuf-
fle_data=False)

Divided the data to train and test and shuffle it

deep_bottleneck.utils.get_min_max(activations_summary, layer_number, neu-
ron_number=None)

Get minimum and maximum of activations of a specific layer or a specific neuron over all epochs :param
activations_summary: numpy ndarray :param layer_number: Index of the layer :param neuron_number: Index
of the neuron. If None, activations of the whole layer serve as a basis

Returns Minimum and maximum value of activations over all epochs

deep_bottleneck.utils.is_dense_like(layer)
Check whether a layer has attribute ‘kernel’, which is true for dense-like layers :param layer: Keras layer to
check for attribute ‘kernel’

Returns True if layer has attribute ‘kernel’, False otherwise

deep_bottleneck.utils.shuffle_in_unison_inplace(a, b)
Shuffles both array a and b randomly in unison :param a: An Array, for example containing data samples :param
b: An Array, fpor example containing labels

Returns Both arrays shuffled in the same way

9.1.6 Module contents

76 Chapter 9. API Documentation

Bibliography

[TZ15] Naftali Tishby and Noga Zaslavsky. Deep Learning and the Information Bottleneck Principle. Ieee, pages 1–5,
2015. URL: https://arxiv.org/pdf/1503.02406.pdf, arXiv:1503.02406, doi:10.1109/ITW.2015.7133169.

77

https://arxiv.org/pdf/1503.02406.pdf
https://arxiv.org/abs/1503.02406
https://doi.org/10.1109/ITW.2015.7133169

Deep Bottleneck Documentation

78 Bibliography

Python Module Index

d
deep_bottleneck, 76
deep_bottleneck.artifact_viewer, 74
deep_bottleneck.callbacks, 67
deep_bottleneck.callbacks.activityprojector,

65
deep_bottleneck.callbacks.earlystopping_manual,

66
deep_bottleneck.callbacks.loggingreporter,

66
deep_bottleneck.callbacks.metrics_logger,

66
deep_bottleneck.datasets, 68
deep_bottleneck.datasets.fashion_mnist,

67
deep_bottleneck.datasets.harmonics, 67
deep_bottleneck.datasets.mnist, 67
deep_bottleneck.datasets.mushroom, 68
deep_bottleneck.eval_tools, 70
deep_bottleneck.eval_tools.artifact, 68
deep_bottleneck.eval_tools.experiment,

69
deep_bottleneck.eval_tools.experiment_loader,

69
deep_bottleneck.eval_tools.utils, 70
deep_bottleneck.mi_estimator, 72
deep_bottleneck.mi_estimator.base, 70
deep_bottleneck.mi_estimator.binning,

71
deep_bottleneck.mi_estimator.bounded,

71
deep_bottleneck.mi_estimator.kde, 71
deep_bottleneck.mi_estimator.lower, 72
deep_bottleneck.mi_estimator.upper, 72
deep_bottleneck.models, 73
deep_bottleneck.models.feedforward, 72
deep_bottleneck.models.feedforward_batchnorm,

73
deep_bottleneck.plotter, 74

deep_bottleneck.plotter.activations, 73
deep_bottleneck.plotter.activations_single_neuron,

73
deep_bottleneck.plotter.base, 73
deep_bottleneck.plotter.informationplane,

73
deep_bottleneck.plotter.informationplane_movie,

74
deep_bottleneck.plotter.snr, 74
deep_bottleneck.run_experiments, 75
deep_bottleneck.utils, 75

79

Deep Bottleneck Documentation

80 Python Module Index

Index

A
ActivityPlotter (class in

deep_bottleneck.plotter.activations), 73
ActivityProjector (class in

deep_bottleneck.callbacks.activityprojector),
65

Artifact (class in deep_bottleneck.artifact_viewer), 74
Artifact (class in deep_bottleneck.eval_tools.artifact), 68
artifact_name_to_cls (deep_bottleneck.eval_tools.experiment.Experiment

attribute), 69
ArtifactLoader (class in deep_bottleneck.artifact_viewer),

74
artifacts (deep_bottleneck.eval_tools.experiment.Experiment

attribute), 69

B
BasePlotter (class in deep_bottleneck.plotter.base), 73
BinningMutualInformationEstimator (class in

deep_bottleneck.mi_estimator.binning), 71
BoundedMutualInformationEstimator (class in

deep_bottleneck.mi_estimator.bounded),
71

C
compute_mi() (deep_bottleneck.mi_estimator.base.MutualInformationEstimator

method), 70
construct_full_dataset() (in module

deep_bottleneck.utils), 75
content (deep_bottleneck.artifact_viewer.Artifact at-

tribute), 74
content (deep_bottleneck.eval_tools.artifact.Artifact at-

tribute), 68
create_output_directory() (in module

deep_bottleneck.run_experiments), 75
CSVArtifact (class in deep_bottleneck.artifact_viewer),

75
CSVArtifact (class in deep_bottleneck.eval_tools.artifact),

68

D
data_shuffle() (in module deep_bottleneck.utils), 76
deep_bottleneck (module), 76
deep_bottleneck.artifact_viewer (module), 74
deep_bottleneck.callbacks (module), 67
deep_bottleneck.callbacks.activityprojector (module), 65
deep_bottleneck.callbacks.earlystopping_manual (mod-

ule), 66
deep_bottleneck.callbacks.loggingreporter (module), 66
deep_bottleneck.callbacks.metrics_logger (module), 66
deep_bottleneck.datasets (module), 68
deep_bottleneck.datasets.fashion_mnist (module), 67
deep_bottleneck.datasets.harmonics (module), 67
deep_bottleneck.datasets.mnist (module), 67
deep_bottleneck.datasets.mushroom (module), 68
deep_bottleneck.eval_tools (module), 70
deep_bottleneck.eval_tools.artifact (module), 68
deep_bottleneck.eval_tools.experiment (module), 69
deep_bottleneck.eval_tools.experiment_loader (module),

69
deep_bottleneck.eval_tools.utils (module), 70
deep_bottleneck.mi_estimator (module), 72
deep_bottleneck.mi_estimator.base (module), 70
deep_bottleneck.mi_estimator.binning (module), 71
deep_bottleneck.mi_estimator.bounded (module), 71
deep_bottleneck.mi_estimator.kde (module), 71
deep_bottleneck.mi_estimator.lower (module), 72
deep_bottleneck.mi_estimator.upper (module), 72
deep_bottleneck.models (module), 73
deep_bottleneck.models.feedforward (module), 72
deep_bottleneck.models.feedforward_batchnorm (mod-

ule), 73
deep_bottleneck.plotter (module), 74
deep_bottleneck.plotter.activations (module), 73
deep_bottleneck.plotter.activations_single_neuron (mod-

ule), 73
deep_bottleneck.plotter.base (module), 73
deep_bottleneck.plotter.informationplane (module), 73
deep_bottleneck.plotter.informationplane_movie (mod-

81

Deep Bottleneck Documentation

ule), 74
deep_bottleneck.plotter.snr (module), 74
deep_bottleneck.run_experiments (module), 75
deep_bottleneck.utils (module), 75

E
EarlyStoppingAtSpecificAccuracy (class in

deep_bottleneck.callbacks.earlystopping_manual),
66

entropy_estimator_bd() (in module
deep_bottleneck.mi_estimator.kde), 71

entropy_estimator_kl() (in module
deep_bottleneck.mi_estimator.kde), 71

Experiment (class in deep_bottleneck.eval_tools.experiment),
69

ExperimentLoader (class in
deep_bottleneck.eval_tools.experiment_loader),
69

extension (deep_bottleneck.artifact_viewer.Artifact at-
tribute), 74

extension (deep_bottleneck.artifact_viewer.CSVArtifact
attribute), 75

extension (deep_bottleneck.artifact_viewer.MP4Artifact
attribute), 75

extension (deep_bottleneck.artifact_viewer.PNGArtifact
attribute), 75

extension (deep_bottleneck.eval_tools.artifact.Artifact at-
tribute), 68

extension (deep_bottleneck.eval_tools.artifact.CSVArtifact
attribute), 68

extension (deep_bottleneck.eval_tools.artifact.MP4Artifact
attribute), 68

extension (deep_bottleneck.eval_tools.artifact.PNGArtifact
attribute), 69

F
filename (deep_bottleneck.plotter.informationplane_movie.InformationPlaneMoviePlotter

attribute), 74
find_by_config_key (deep_bottleneck.eval_tools.experiment_loader.ExperimentLoader

attribute), 69
find_by_id (deep_bottleneck.eval_tools.experiment_loader.ExperimentLoader

attribute), 69
find_by_ids() (deep_bottleneck.eval_tools.experiment_loader.ExperimentLoader

method), 69
find_by_name (deep_bottleneck.eval_tools.experiment_loader.ExperimentLoader

attribute), 70
find_differing_config_keys() (in module

deep_bottleneck.eval_tools.utils), 70
format_config() (in module

deep_bottleneck.eval_tools.utils), 70
from_db_object() (deep_bottleneck.eval_tools.experiment.Experiment

class method), 69

G
generate() (deep_bottleneck.plotter.base.BasePlotter

method), 73
generate() (deep_bottleneck.plotter.informationplane_movie.InformationPlaneMoviePlotter

method), 74
get_min_max() (in module deep_bottleneck.utils), 76
get_shape() (in module

deep_bottleneck.mi_estimator.kde), 71

I
img (deep_bottleneck.eval_tools.artifact.PNGArtifact at-

tribute), 69
import_IB_data_from_mat() (in module

deep_bottleneck.datasets.harmonics), 67
InformationPlaneMoviePlotter (class in

deep_bottleneck.plotter.informationplane_movie),
74

InformationPlanePlotter (class in
deep_bottleneck.plotter.informationplane),
73

is_dense_like() (in module deep_bottleneck.utils), 76

K
kde_condentropy() (in module

deep_bottleneck.mi_estimator.kde), 71
Kget_dists() (in module

deep_bottleneck.mi_estimator.kde), 71

L
load (deep_bottleneck.artifact_viewer.ArtifactLoader at-

tribute), 74
load() (deep_bottleneck.callbacks.earlystopping_manual.EarlyStoppingAtSpecificAccuracy

class method), 66
load() (in module deep_bottleneck.callbacks.earlystopping_manual),

66
load() (in module deep_bottleneck.datasets.fashion_mnist),

67
load() (in module deep_bottleneck.datasets.harmonics),

67
load() (in module deep_bottleneck.datasets.mnist), 67
load() (in module deep_bottleneck.datasets.mushroom),

68
load() (in module deep_bottleneck.mi_estimator.binning),

71
load() (in module deep_bottleneck.mi_estimator.lower),

72
load() (in module deep_bottleneck.mi_estimator.upper),

72
load() (in module deep_bottleneck.models.feedforward),

72
load() (in module deep_bottleneck.models.feedforward_batchnorm),

73
load() (in module deep_bottleneck.plotter.activations), 73

82 Index

Deep Bottleneck Documentation

load() (in module deep_bottleneck.plotter.activations_single_neuron),
73

load() (in module deep_bottleneck.plotter.informationplane),
74

load() (in module deep_bottleneck.plotter.informationplane_movie),
74

load() (in module deep_bottleneck.plotter.snr), 74
LoggingReporter (class in

deep_bottleneck.callbacks.loggingreporter), 66
LowerBoundMutualInformationEstimator (class in

deep_bottleneck.mi_estimator.lower), 72

M
main() (in module deep_bottleneck.run_experiments), 75
metrics (deep_bottleneck.eval_tools.experiment.Experiment

attribute), 69
MetricsLogger (class in

deep_bottleneck.callbacks.metrics_logger),
66

MP4Artifact (class in deep_bottleneck.artifact_viewer),
75

MP4Artifact (class in deep_bottleneck.eval_tools.artifact),
68

MutualInformationEstimator (class in
deep_bottleneck.mi_estimator.base), 70

N
nats2bits (deep_bottleneck.mi_estimator.base.MutualInformationEstimator

attribute), 70

O
on_batch_begin() (deep_bottleneck.callbacks.loggingreporter.LoggingReporter

method), 66
on_epoch_begin() (deep_bottleneck.callbacks.loggingreporter.LoggingReporter

method), 66
on_epoch_end() (deep_bottleneck.callbacks.activityprojector.ActivityProjector

method), 65
on_epoch_end() (deep_bottleneck.callbacks.earlystopping_manual.EarlyStoppingAtSpecificAccuracy

method), 66
on_epoch_end() (deep_bottleneck.callbacks.loggingreporter.LoggingReporter

method), 66
on_epoch_end() (deep_bottleneck.callbacks.metrics_logger.MetricsLogger

method), 66
on_train_begin() (deep_bottleneck.callbacks.loggingreporter.LoggingReporter

method), 66
on_train_end() (deep_bottleneck.callbacks.activityprojector.ActivityProjector

method), 65

P
parse_command_line_args() (in module

deep_bottleneck.run_experiments), 75
plot() (deep_bottleneck.plotter.activations.ActivityPlotter

method), 73

plot() (deep_bottleneck.plotter.activations_single_neuron.SingleNeuronActivityPlotter
method), 73

plot() (deep_bottleneck.plotter.base.BasePlotter method),
73

plot() (deep_bottleneck.plotter.informationplane.InformationPlanePlotter
method), 74

plot() (deep_bottleneck.plotter.informationplane_movie.InformationPlaneMoviePlotter
method), 74

plot() (deep_bottleneck.plotter.snr.SignalToNoiseRatioPlotter
method), 74

plotname (deep_bottleneck.plotter.activations.ActivityPlotter
attribute), 73

plotname (deep_bottleneck.plotter.activations_single_neuron.SingleNeuronActivityPlotter
attribute), 73

plotname (deep_bottleneck.plotter.base.BasePlotter at-
tribute), 73

plotname (deep_bottleneck.plotter.informationplane.InformationPlanePlotter
attribute), 74

plotname (deep_bottleneck.plotter.informationplane_movie.InformationPlaneMoviePlotter
attribute), 74

plotname (deep_bottleneck.plotter.snr.SignalToNoiseRatioPlotter
attribute), 74

PNGArtifact (class in deep_bottleneck.artifact_viewer),
75

PNGArtifact (class in
deep_bottleneck.eval_tools.artifact), 69

Python Enhancement Proposals
PEP 8, 4

S
save() (deep_bottleneck.artifact_viewer.Artifact method),

74
save() (deep_bottleneck.eval_tools.artifact.Artifact

method), 68
set_model() (deep_bottleneck.callbacks.activityprojector.ActivityProjector

method), 65
show() (deep_bottleneck.artifact_viewer.CSVArtifact

method), 75
show() (deep_bottleneck.artifact_viewer.MP4Artifact

method), 75
show() (deep_bottleneck.artifact_viewer.PNGArtifact

method), 75
show() (deep_bottleneck.eval_tools.artifact.CSVArtifact

method), 68
show() (deep_bottleneck.eval_tools.artifact.MP4Artifact

method), 68
show() (deep_bottleneck.eval_tools.artifact.PNGArtifact

method), 69
shuffle_in_unison_inplace() (in module

deep_bottleneck.utils), 76
SignalToNoiseRatioPlotter (class in

deep_bottleneck.plotter.snr), 74
SingleNeuronActivityPlotter (class in

deep_bottleneck.plotter.activations_single_neuron),

Index 83

Deep Bottleneck Documentation

73
start_experiments() (in module

deep_bottleneck.run_experiments), 75

U
UpperBoundMutualInformationEstimator (class in

deep_bottleneck.mi_estimator.upper), 72

84 Index

	Big Picture
	Entropy & Mutual Information
	What is this mysterious information bottleneck?
	An Introduction into Neural Networks
	Basic Maths

	Contributing
	Extending the framework
	Git workflow
	Style Guide
	Experiment workflow
	Documentation

	Glossary
	Information Theory Basics
	Mathematical Terms in Tishby’s Experiments

	Literature
	Literature Summary
	1. THE INFORMATION BOTTLENECK METHOD (Tishby 1999)
	2. DEEP LEARNING AND THE INFORMATION BOTTLENECK PRINCIPLE (Tishby 2015)
	3. OPENING THE BLACK BOX OF DEEP NEURAL NETWORKS VIA INFORMATION (Tishby 2017)
	4. ON THE INFORMATION BOTTLENECK THEORY OF DEEP LEARNING (Saxe 2018)
	5. ON THE INFORMATION BOTTLENECK THEORY OF DEEP LEARNING

	User guide
	Installation
	How to use the framework

	Experiments
	Description of cohorts
	Comparing activation functions for a minimal model
	Calculation of mutual information for different parts of the dataset
	Experiment Evaluation of Activation Functions
	Standard vs. Weighted Binning
	Effect of weight renormalization on activity patterns
	The data set provided by Tishby
	Our attempt to generate the data set above

	Indices and tables
	API Documentation
	deep_bottleneck package

	Bibliography
	Python Module Index

