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Introduction

● analyzes and responds to (Tishby & Zaslavsky, 2015; Shwartz-Ziv & Tishby, 2017)

● Tishbyproposed his theory can be used to compare different architectures

● information bottleneck (IB) theory provides a fundamental bound on the amount of input 

compression and target output information that any representation can achieve (Tishby et al., 

1999)



Introduction

● “fitting” phase:

 mutual information between the hidden layers and both the input and output increases

●  “compression” phase :

mutual information between the hidden layers and the input decreases

● Hypothesize:

- compression phase is responsible for the excellent generalization performance of deep networks 

- occurs due to the random diffusion-like behavior of stochastic gradient descent.



Introduction

Aim is to study these phenomena using a combination 
of analytical methods and simulation



tanh nonlinearity activation function: rectified linear activation function:

Compression and Neural Nonlinearities



Compression and Neural Nonlinearities

Tanh nonlinearity activation function: Rectified Linear activation function:

compression            no compression



Compression and Neural Nonlinearities

         Tanh trained on MNIST:       ReLU trained on MNIST:

          compression    no compression



Compression and Neural Nonlinearities

Soft-sign activation function:      Soft-plus activation function:



Compression and Neural Nonlinearities

Soft-sign activation function:      Soft-plus activation function:

modest compression       no compression



Compression and Neural Nonlinearities

Three Neuron Model:

Mutual Information:

since T is a 
deterministic 
function of X



Compression and Neural Nonlinearities

input X produces a hidden unit activity that lands in bin i, defined by lower and upper bin limits bi and bi+1:

for monotonic nonlinearities f() using the cumulative density of X:



Compression and Neural Nonlinearities

mutual information as a function of weight



Compression and Neural Nonlinearities

binning procedure can be viewed as implicitly adding noise to the hidden layer activity:



Information Plane Dynamics in Deep Linear Networks

generates a dataset by 
passing Gaussian inputs X 
through its weights and 
adding noise

A deep linear student 
network is trained on the 
dataset

no compression



Compression and Neural Nonlinearities

student network is then trained to minimize the mean squared error:

calculating the mutual information:



Information Plane Dynamics in Deep Linear Networks

Average training and test mean square 
error for a deep linear network trained 

with SGD

No compression is observed



Information Plane Dynamics in Deep Linear Networks

Overfitting occurs despite 
continued compression

Average train and test accuracy (% 
correct) for nonlinear tanh networks



Information Plane Dynamics in Deep Linear Networks

tanh network trained with SGD tanh network trained with BGD



Information Plane Dynamics in Deep Linear Networks

ReLU network trained with SGD ReLU network trained with BGD



Compression in Batch Gradient Descent and SGD

Stochastic gradient descent is responsible for the compression phase?

“drift” phase:

mean of the gradients over 
training samples is large relative 
to the standard deviation of the
gradients

“diffusion” phase:

the mean becomes smaller than 
the standard deviation
of the gradients



Compression in Batch Gradient Descent and SGD

Stochastic gradient descent is responsible for the compression phase?

-> Explanation does not hold up to either theoretical or empirical

theoretical:

There is no general reason that a given set 
of weights sampled from this distribution 
(i.e., the weight parameters found in one 
particular training run) will maximize H(XjT)

empirical:

- stochasticity of the SGD is not necessary for
   compression

- showed by training tanh and ReLU 
   networks with SGD and BGD



Simultaneous Fitting and Compression

For a large task-irrelevant 
subspace in the input, a linear 
network shows no overall 
compression

Information with the 
task-relevant subspace 
increases robustly over 
training

Information about the 
task-irrelevant subspace 
does compress over 
training



Discussion

● compression dynamics in the information plane are not a general feature of deep networks

● stochasticity in the training process does not contribute to compression

● generalization performance may not clearly track information plane behavior (link between 

compression and generalization?)

● link the information bottleneck principle with current practice in deep networks



Thank you for your attention!

Any questions?


